A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit
The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM tec...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-02, Vol.11 (3), p.358 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 358 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Park, Jong-Yoon Pérez, Rocío L. Ayala, Caitlan E. Vaughan, Stephanie R. Warner, Isiah M. Choi, Jin-Woo |
description | The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM technique beyond the laboratory. However, most commercial QCM instruments are not suitable for off-laboratory usage. For field-deployable applications and in situ detection, the development of a portable QCM measurement system achieving comparable performance to benchtop instruments is highly desired. In this paper, we describe the development of a fully customizable, miniaturized, battery-powered, and cost-efficient QCM system employing a phase-locked loop (PLL) electronic circuit-based QCM measurement system. The performance of this developed system showed a minimum frequency resolution of approximately 0.22 Hz at 0.1 s measurement time. This novel, miniaturized system successfully demonstrated an ability to detect two common volatile organic compounds (VOCs), methanol and dichloromethane (DCM), and the obtained results were comparable to responses from a commercially available benchtop instrument. |
doi_str_mv | 10.3390/electronics11030358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627528370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627528370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1cb2238dade1589348e1f1505b64f94b2cc3b01a5f5c76c95bb8223a686d674c3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUSFzgE_IgT-1giCpVSQSU4R47jiJTULn4c2q_HUA4c2MuOdmdmtQPAJUa3lAp0p0etgrNmUB5jRBFl_ARMCCpFJoggp3_wOZh5v0GpBKacogkY53A1mEGG6IaD7uA6ShcOsHJ7H-SYdsrZVo7SKA2v19XqBq609NHprTYBLo0PLv7Ae-mT3Boo4ct7wllt1Uea1NbuYDU4FYdwAc56OXo9--1T8LZ4eK2esvr5cVnN60xRQkKGVUsI5Z3sNGZc0Jxr3GOGWFvkvchbohRtEZasZ6oslGBty5NAFrzoijJXdAqujr47Zz-j9qHZ2OhMOtmQgpSMcFqixKJHVnrRe6f7ZueGrXT7BqPmO9nmn2TpF3V7bs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627528370</pqid></control><display><type>article</type><title>A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Park, Jong-Yoon ; Pérez, Rocío L. ; Ayala, Caitlan E. ; Vaughan, Stephanie R. ; Warner, Isiah M. ; Choi, Jin-Woo</creator><creatorcontrib>Park, Jong-Yoon ; Pérez, Rocío L. ; Ayala, Caitlan E. ; Vaughan, Stephanie R. ; Warner, Isiah M. ; Choi, Jin-Woo</creatorcontrib><description>The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM technique beyond the laboratory. However, most commercial QCM instruments are not suitable for off-laboratory usage. For field-deployable applications and in situ detection, the development of a portable QCM measurement system achieving comparable performance to benchtop instruments is highly desired. In this paper, we describe the development of a fully customizable, miniaturized, battery-powered, and cost-efficient QCM system employing a phase-locked loop (PLL) electronic circuit-based QCM measurement system. The performance of this developed system showed a minimum frequency resolution of approximately 0.22 Hz at 0.1 s measurement time. This novel, miniaturized system successfully demonstrated an ability to detect two common volatile organic compounds (VOCs), methanol and dichloromethane (DCM), and the obtained results were comparable to responses from a commercially available benchtop instrument.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11030358</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Circuits ; Design ; Dichloromethane ; Electronic circuits ; Field programmable gate arrays ; Measurement techniques ; Microbalances ; Phase locked loops ; Quartz crystals ; Receivers & amplifiers ; Sensors ; VOCs ; Volatile organic compounds</subject><ispartof>Electronics (Basel), 2022-02, Vol.11 (3), p.358</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-1cb2238dade1589348e1f1505b64f94b2cc3b01a5f5c76c95bb8223a686d674c3</citedby><cites>FETCH-LOGICAL-c322t-1cb2238dade1589348e1f1505b64f94b2cc3b01a5f5c76c95bb8223a686d674c3</cites><orcidid>0000-0001-5261-0888 ; 0000-0002-4908-0406 ; 0000-0002-9210-9681 ; 0000-0002-5336-7653 ; 0000-0002-4236-0544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Park, Jong-Yoon</creatorcontrib><creatorcontrib>Pérez, Rocío L.</creatorcontrib><creatorcontrib>Ayala, Caitlan E.</creatorcontrib><creatorcontrib>Vaughan, Stephanie R.</creatorcontrib><creatorcontrib>Warner, Isiah M.</creatorcontrib><creatorcontrib>Choi, Jin-Woo</creatorcontrib><title>A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit</title><title>Electronics (Basel)</title><description>The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM technique beyond the laboratory. However, most commercial QCM instruments are not suitable for off-laboratory usage. For field-deployable applications and in situ detection, the development of a portable QCM measurement system achieving comparable performance to benchtop instruments is highly desired. In this paper, we describe the development of a fully customizable, miniaturized, battery-powered, and cost-efficient QCM system employing a phase-locked loop (PLL) electronic circuit-based QCM measurement system. The performance of this developed system showed a minimum frequency resolution of approximately 0.22 Hz at 0.1 s measurement time. This novel, miniaturized system successfully demonstrated an ability to detect two common volatile organic compounds (VOCs), methanol and dichloromethane (DCM), and the obtained results were comparable to responses from a commercially available benchtop instrument.</description><subject>Circuits</subject><subject>Design</subject><subject>Dichloromethane</subject><subject>Electronic circuits</subject><subject>Field programmable gate arrays</subject><subject>Measurement techniques</subject><subject>Microbalances</subject><subject>Phase locked loops</subject><subject>Quartz crystals</subject><subject>Receivers & amplifiers</subject><subject>Sensors</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUSFzgE_IgT-1giCpVSQSU4R47jiJTULn4c2q_HUA4c2MuOdmdmtQPAJUa3lAp0p0etgrNmUB5jRBFl_ARMCCpFJoggp3_wOZh5v0GpBKacogkY53A1mEGG6IaD7uA6ShcOsHJ7H-SYdsrZVo7SKA2v19XqBq609NHprTYBLo0PLv7Ae-mT3Boo4ct7wllt1Uea1NbuYDU4FYdwAc56OXo9--1T8LZ4eK2esvr5cVnN60xRQkKGVUsI5Z3sNGZc0Jxr3GOGWFvkvchbohRtEZasZ6oslGBty5NAFrzoijJXdAqujr47Zz-j9qHZ2OhMOtmQgpSMcFqixKJHVnrRe6f7ZueGrXT7BqPmO9nmn2TpF3V7bs4</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Park, Jong-Yoon</creator><creator>Pérez, Rocío L.</creator><creator>Ayala, Caitlan E.</creator><creator>Vaughan, Stephanie R.</creator><creator>Warner, Isiah M.</creator><creator>Choi, Jin-Woo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5261-0888</orcidid><orcidid>https://orcid.org/0000-0002-4908-0406</orcidid><orcidid>https://orcid.org/0000-0002-9210-9681</orcidid><orcidid>https://orcid.org/0000-0002-5336-7653</orcidid><orcidid>https://orcid.org/0000-0002-4236-0544</orcidid></search><sort><creationdate>20220201</creationdate><title>A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit</title><author>Park, Jong-Yoon ; Pérez, Rocío L. ; Ayala, Caitlan E. ; Vaughan, Stephanie R. ; Warner, Isiah M. ; Choi, Jin-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1cb2238dade1589348e1f1505b64f94b2cc3b01a5f5c76c95bb8223a686d674c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Design</topic><topic>Dichloromethane</topic><topic>Electronic circuits</topic><topic>Field programmable gate arrays</topic><topic>Measurement techniques</topic><topic>Microbalances</topic><topic>Phase locked loops</topic><topic>Quartz crystals</topic><topic>Receivers & amplifiers</topic><topic>Sensors</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jong-Yoon</creatorcontrib><creatorcontrib>Pérez, Rocío L.</creatorcontrib><creatorcontrib>Ayala, Caitlan E.</creatorcontrib><creatorcontrib>Vaughan, Stephanie R.</creatorcontrib><creatorcontrib>Warner, Isiah M.</creatorcontrib><creatorcontrib>Choi, Jin-Woo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jong-Yoon</au><au>Pérez, Rocío L.</au><au>Ayala, Caitlan E.</au><au>Vaughan, Stephanie R.</au><au>Warner, Isiah M.</au><au>Choi, Jin-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>11</volume><issue>3</issue><spage>358</spage><pages>358-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM technique beyond the laboratory. However, most commercial QCM instruments are not suitable for off-laboratory usage. For field-deployable applications and in situ detection, the development of a portable QCM measurement system achieving comparable performance to benchtop instruments is highly desired. In this paper, we describe the development of a fully customizable, miniaturized, battery-powered, and cost-efficient QCM system employing a phase-locked loop (PLL) electronic circuit-based QCM measurement system. The performance of this developed system showed a minimum frequency resolution of approximately 0.22 Hz at 0.1 s measurement time. This novel, miniaturized system successfully demonstrated an ability to detect two common volatile organic compounds (VOCs), methanol and dichloromethane (DCM), and the obtained results were comparable to responses from a commercially available benchtop instrument.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11030358</doi><orcidid>https://orcid.org/0000-0001-5261-0888</orcidid><orcidid>https://orcid.org/0000-0002-4908-0406</orcidid><orcidid>https://orcid.org/0000-0002-9210-9681</orcidid><orcidid>https://orcid.org/0000-0002-5336-7653</orcidid><orcidid>https://orcid.org/0000-0002-4236-0544</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-02, Vol.11 (3), p.358 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2627528370 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Circuits Design Dichloromethane Electronic circuits Field programmable gate arrays Measurement techniques Microbalances Phase locked loops Quartz crystals Receivers & amplifiers Sensors VOCs Volatile organic compounds |
title | A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Miniaturized%20Quartz%20Crystal%20Microbalance%20(QCM)%20Measurement%20Instrument%20Based%20on%20a%20Phase-Locked%20Loop%20Circuit&rft.jtitle=Electronics%20(Basel)&rft.au=Park,%20Jong-Yoon&rft.date=2022-02-01&rft.volume=11&rft.issue=3&rft.spage=358&rft.pages=358-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11030358&rft_dat=%3Cproquest_cross%3E2627528370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627528370&rft_id=info:pmid/&rfr_iscdi=true |