An Enhanced Method for Dynamic Characterization of High-Power LEDs for Visible Light Communication Applications
Visible light communications (VLC) have been proposed for several applications beyond the traditional indoor scenarios, from vehicular to underwater communications. The common element in all these applications is the use of light-emitting diodes (LEDs) in which the forward current that flows through...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-02, Vol.11 (3), p.292 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 292 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Betancourt Perlaza, Juan S. Torres Zafra, Juan C. Morales Céspedes, Máximo Martínez-Sarriegui, Iñaki del Valle, Carlos I. Sánchez Pena, José M. |
description | Visible light communications (VLC) have been proposed for several applications beyond the traditional indoor scenarios, from vehicular to underwater communications. The common element in all these applications is the use of light-emitting diodes (LEDs) in which the forward current that flows through each LED plays a major role. Therefore, knowing the electrical equivalent of the LEDs is a useful tool for the proper design of the VLC systems. Currently, some measurement instruments exist, such as the LCR (inductance, capacitance, and resistance) meters or impedance analyzers to characterize the main parameters of the LEDs. However, these instruments and measurement procedures are subject to satisfying some requirements, such as a minimum value of the input impedance or the maximum forward current. In this work, the LED LXHL-BW02 is used to obtain its equivalent circuit, using different measurement methods and traditional methods of measurement with our proposed method. The equivalent model is implemented on the simulation tool LTSPICE. Our alternative method can be used for determining the electrical equivalent circuit of LEDs subject to high current variations at very high frequencies, in the MHz range, i.e., in an operating range for VLC applications. |
doi_str_mv | 10.3390/electronics11030292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627524870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627524870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-817ba5e25bf1f5294293e63488c8fa4e2ad8e5b6c95153705cfb8097c692be2e3</originalsourceid><addsrcrecordid>eNptkD9PwzAQxS0EElXpJ2CxxBzwnzixxyotFCkIBmCNHPdMXCVxsFMh-PQE2oGBW-4n3bt7p4fQJSXXnCtyAy2YMfjemUgp4YQpdoJmjOQqUROf_uFztIhxR6ZSlEtOZsgve7zuG90b2OIHGBu_xdYHvPrsdecMLhodtBkhuC89Ot9jb_HGvTXJk_-AgMv1Kv7qX110dQu4nGYjLnzX7aeHDivLYWiPHC_QmdVthMWxz9HL7fq52CTl4919sSwTwxkbE0nzWgtgorbUCqZSpjhkPJXSSKtTYHorQdSZUYIKnhNhbC2Jyk2mWA0M-BxdHe4Owb_vIY7Vzu9DP1lWLGO5YKnMyaTiB5UJPsYAthqC63T4rCipfsKt_gmXfwM8znB9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627524870</pqid></control><display><type>article</type><title>An Enhanced Method for Dynamic Characterization of High-Power LEDs for Visible Light Communication Applications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Betancourt Perlaza, Juan S. ; Torres Zafra, Juan C. ; Morales Céspedes, Máximo ; Martínez-Sarriegui, Iñaki ; del Valle, Carlos I. ; Sánchez Pena, José M.</creator><creatorcontrib>Betancourt Perlaza, Juan S. ; Torres Zafra, Juan C. ; Morales Céspedes, Máximo ; Martínez-Sarriegui, Iñaki ; del Valle, Carlos I. ; Sánchez Pena, José M.</creatorcontrib><description>Visible light communications (VLC) have been proposed for several applications beyond the traditional indoor scenarios, from vehicular to underwater communications. The common element in all these applications is the use of light-emitting diodes (LEDs) in which the forward current that flows through each LED plays a major role. Therefore, knowing the electrical equivalent of the LEDs is a useful tool for the proper design of the VLC systems. Currently, some measurement instruments exist, such as the LCR (inductance, capacitance, and resistance) meters or impedance analyzers to characterize the main parameters of the LEDs. However, these instruments and measurement procedures are subject to satisfying some requirements, such as a minimum value of the input impedance or the maximum forward current. In this work, the LED LXHL-BW02 is used to obtain its equivalent circuit, using different measurement methods and traditional methods of measurement with our proposed method. The equivalent model is implemented on the simulation tool LTSPICE. Our alternative method can be used for determining the electrical equivalent circuit of LEDs subject to high current variations at very high frequencies, in the MHz range, i.e., in an operating range for VLC applications.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11030292</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analyzers ; Bandwidths ; Bias ; Circuits ; Equivalent circuits ; Inductance ; Input impedance ; Laboratories ; Light emitting diodes ; Measurement methods ; Measuring instruments ; Optical communication ; Spectrum allocation ; Underwater communication ; Very high frequencies</subject><ispartof>Electronics (Basel), 2022-02, Vol.11 (3), p.292</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-817ba5e25bf1f5294293e63488c8fa4e2ad8e5b6c95153705cfb8097c692be2e3</citedby><cites>FETCH-LOGICAL-c322t-817ba5e25bf1f5294293e63488c8fa4e2ad8e5b6c95153705cfb8097c692be2e3</cites><orcidid>0000-0001-9175-9888 ; 0000-0001-8463-3187 ; 0000-0002-9439-9192 ; 0000-0002-5903-5967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Betancourt Perlaza, Juan S.</creatorcontrib><creatorcontrib>Torres Zafra, Juan C.</creatorcontrib><creatorcontrib>Morales Céspedes, Máximo</creatorcontrib><creatorcontrib>Martínez-Sarriegui, Iñaki</creatorcontrib><creatorcontrib>del Valle, Carlos I.</creatorcontrib><creatorcontrib>Sánchez Pena, José M.</creatorcontrib><title>An Enhanced Method for Dynamic Characterization of High-Power LEDs for Visible Light Communication Applications</title><title>Electronics (Basel)</title><description>Visible light communications (VLC) have been proposed for several applications beyond the traditional indoor scenarios, from vehicular to underwater communications. The common element in all these applications is the use of light-emitting diodes (LEDs) in which the forward current that flows through each LED plays a major role. Therefore, knowing the electrical equivalent of the LEDs is a useful tool for the proper design of the VLC systems. Currently, some measurement instruments exist, such as the LCR (inductance, capacitance, and resistance) meters or impedance analyzers to characterize the main parameters of the LEDs. However, these instruments and measurement procedures are subject to satisfying some requirements, such as a minimum value of the input impedance or the maximum forward current. In this work, the LED LXHL-BW02 is used to obtain its equivalent circuit, using different measurement methods and traditional methods of measurement with our proposed method. The equivalent model is implemented on the simulation tool LTSPICE. Our alternative method can be used for determining the electrical equivalent circuit of LEDs subject to high current variations at very high frequencies, in the MHz range, i.e., in an operating range for VLC applications.</description><subject>Analyzers</subject><subject>Bandwidths</subject><subject>Bias</subject><subject>Circuits</subject><subject>Equivalent circuits</subject><subject>Inductance</subject><subject>Input impedance</subject><subject>Laboratories</subject><subject>Light emitting diodes</subject><subject>Measurement methods</subject><subject>Measuring instruments</subject><subject>Optical communication</subject><subject>Spectrum allocation</subject><subject>Underwater communication</subject><subject>Very high frequencies</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkD9PwzAQxS0EElXpJ2CxxBzwnzixxyotFCkIBmCNHPdMXCVxsFMh-PQE2oGBW-4n3bt7p4fQJSXXnCtyAy2YMfjemUgp4YQpdoJmjOQqUROf_uFztIhxR6ZSlEtOZsgve7zuG90b2OIHGBu_xdYHvPrsdecMLhodtBkhuC89Ot9jb_HGvTXJk_-AgMv1Kv7qX110dQu4nGYjLnzX7aeHDivLYWiPHC_QmdVthMWxz9HL7fq52CTl4919sSwTwxkbE0nzWgtgorbUCqZSpjhkPJXSSKtTYHorQdSZUYIKnhNhbC2Jyk2mWA0M-BxdHe4Owb_vIY7Vzu9DP1lWLGO5YKnMyaTiB5UJPsYAthqC63T4rCipfsKt_gmXfwM8znB9</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Betancourt Perlaza, Juan S.</creator><creator>Torres Zafra, Juan C.</creator><creator>Morales Céspedes, Máximo</creator><creator>Martínez-Sarriegui, Iñaki</creator><creator>del Valle, Carlos I.</creator><creator>Sánchez Pena, José M.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9175-9888</orcidid><orcidid>https://orcid.org/0000-0001-8463-3187</orcidid><orcidid>https://orcid.org/0000-0002-9439-9192</orcidid><orcidid>https://orcid.org/0000-0002-5903-5967</orcidid></search><sort><creationdate>20220201</creationdate><title>An Enhanced Method for Dynamic Characterization of High-Power LEDs for Visible Light Communication Applications</title><author>Betancourt Perlaza, Juan S. ; Torres Zafra, Juan C. ; Morales Céspedes, Máximo ; Martínez-Sarriegui, Iñaki ; del Valle, Carlos I. ; Sánchez Pena, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-817ba5e25bf1f5294293e63488c8fa4e2ad8e5b6c95153705cfb8097c692be2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analyzers</topic><topic>Bandwidths</topic><topic>Bias</topic><topic>Circuits</topic><topic>Equivalent circuits</topic><topic>Inductance</topic><topic>Input impedance</topic><topic>Laboratories</topic><topic>Light emitting diodes</topic><topic>Measurement methods</topic><topic>Measuring instruments</topic><topic>Optical communication</topic><topic>Spectrum allocation</topic><topic>Underwater communication</topic><topic>Very high frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betancourt Perlaza, Juan S.</creatorcontrib><creatorcontrib>Torres Zafra, Juan C.</creatorcontrib><creatorcontrib>Morales Céspedes, Máximo</creatorcontrib><creatorcontrib>Martínez-Sarriegui, Iñaki</creatorcontrib><creatorcontrib>del Valle, Carlos I.</creatorcontrib><creatorcontrib>Sánchez Pena, José M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betancourt Perlaza, Juan S.</au><au>Torres Zafra, Juan C.</au><au>Morales Céspedes, Máximo</au><au>Martínez-Sarriegui, Iñaki</au><au>del Valle, Carlos I.</au><au>Sánchez Pena, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Method for Dynamic Characterization of High-Power LEDs for Visible Light Communication Applications</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>11</volume><issue>3</issue><spage>292</spage><pages>292-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Visible light communications (VLC) have been proposed for several applications beyond the traditional indoor scenarios, from vehicular to underwater communications. The common element in all these applications is the use of light-emitting diodes (LEDs) in which the forward current that flows through each LED plays a major role. Therefore, knowing the electrical equivalent of the LEDs is a useful tool for the proper design of the VLC systems. Currently, some measurement instruments exist, such as the LCR (inductance, capacitance, and resistance) meters or impedance analyzers to characterize the main parameters of the LEDs. However, these instruments and measurement procedures are subject to satisfying some requirements, such as a minimum value of the input impedance or the maximum forward current. In this work, the LED LXHL-BW02 is used to obtain its equivalent circuit, using different measurement methods and traditional methods of measurement with our proposed method. The equivalent model is implemented on the simulation tool LTSPICE. Our alternative method can be used for determining the electrical equivalent circuit of LEDs subject to high current variations at very high frequencies, in the MHz range, i.e., in an operating range for VLC applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11030292</doi><orcidid>https://orcid.org/0000-0001-9175-9888</orcidid><orcidid>https://orcid.org/0000-0001-8463-3187</orcidid><orcidid>https://orcid.org/0000-0002-9439-9192</orcidid><orcidid>https://orcid.org/0000-0002-5903-5967</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-02, Vol.11 (3), p.292 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2627524870 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Analyzers Bandwidths Bias Circuits Equivalent circuits Inductance Input impedance Laboratories Light emitting diodes Measurement methods Measuring instruments Optical communication Spectrum allocation Underwater communication Very high frequencies |
title | An Enhanced Method for Dynamic Characterization of High-Power LEDs for Visible Light Communication Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Method%20for%20Dynamic%20Characterization%20of%20High-Power%20LEDs%20for%20Visible%20Light%20Communication%20Applications&rft.jtitle=Electronics%20(Basel)&rft.au=Betancourt%20Perlaza,%20Juan%20S.&rft.date=2022-02-01&rft.volume=11&rft.issue=3&rft.spage=292&rft.pages=292-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11030292&rft_dat=%3Cproquest_cross%3E2627524870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627524870&rft_id=info:pmid/&rfr_iscdi=true |