Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems

In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915–971, 2020. https://doi.org/10.1007/s00211-020-01131-1 ), where it is shown that in such a settin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2022-02, Vol.150 (2), p.521-549
Hauptverfasser: Helin, Tapio, Kretschmann, Remo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 2
container_start_page 521
container_title Numerische Mathematik
container_volume 150
creator Helin, Tapio
Kretschmann, Remo
description In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915–971, 2020. https://doi.org/10.1007/s00211-020-01131-1 ), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.
doi_str_mv 10.1007/s00211-021-01266-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627177410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627177410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-dd2a43103a4f734ca0d9ba8e9467f084dc32d6477dff50c2748f43943edc40b93</originalsourceid><addsrcrecordid>eNp9UMtOAzEMjBBIlMIPcIrEOeA8NmmOUPGSKriABKcozQO2aneXZIvo35NlkbhxsceyZ2wPQqcUzimAusgAjFJSAgHKpCR6D01Ai4pwJqr9goFpUmn9coiOcl4BUCUFnaDXh7YhNu82Xd_2tcMhpTbhkPt6Y_uQcSxV_x7wwnZr6wK2XZfar6FZtw2uG3xldyHXdsCfIeWAS3-5Dpt8jA6iXedw8pun6Pnm-ml-RxaPt_fzywVxXPKeeM-s4BS4FVFx4Sx4vbSzoIVUEWbCO868FEr5GCtwTIlZFFwLHrwTsNR8is5G3bL4Y1suN6t2m5qy0jDJFFVKFPUpYuOUS23OKUTTpfJF2hkKZrDQjBaaEsyPhWaQ5iMpl-HmLaQ_6X9Y39bEdP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627177410</pqid></control><display><type>article</type><title>Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems</title><source>SpringerNature Journals</source><creator>Helin, Tapio ; Kretschmann, Remo</creator><creatorcontrib>Helin, Tapio ; Kretschmann, Remo</creatorcontrib><description>In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915–971, 2020. https://doi.org/10.1007/s00211-020-01131-1 ), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01266-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Bayesian analysis ; Errors ; Estimates ; Inverse problems ; Mapping ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Noise levels ; Nonlinearity ; Numerical Analysis ; Numerical and Computational Physics ; Perturbation ; Simulation ; Statistical inference ; Theoretical</subject><ispartof>Numerische Mathematik, 2022-02, Vol.150 (2), p.521-549</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-dd2a43103a4f734ca0d9ba8e9467f084dc32d6477dff50c2748f43943edc40b93</citedby><cites>FETCH-LOGICAL-c363t-dd2a43103a4f734ca0d9ba8e9467f084dc32d6477dff50c2748f43943edc40b93</cites><orcidid>0000-0002-5788-0008 ; 0000-0002-4856-955X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-021-01266-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-021-01266-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Helin, Tapio</creatorcontrib><creatorcontrib>Kretschmann, Remo</creatorcontrib><title>Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915–971, 2020. https://doi.org/10.1007/s00211-020-01131-1 ), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Errors</subject><subject>Estimates</subject><subject>Inverse problems</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise levels</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Perturbation</subject><subject>Simulation</subject><subject>Statistical inference</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtOAzEMjBBIlMIPcIrEOeA8NmmOUPGSKriABKcozQO2aneXZIvo35NlkbhxsceyZ2wPQqcUzimAusgAjFJSAgHKpCR6D01Ai4pwJqr9goFpUmn9coiOcl4BUCUFnaDXh7YhNu82Xd_2tcMhpTbhkPt6Y_uQcSxV_x7wwnZr6wK2XZfar6FZtw2uG3xldyHXdsCfIeWAS3-5Dpt8jA6iXedw8pun6Pnm-ml-RxaPt_fzywVxXPKeeM-s4BS4FVFx4Sx4vbSzoIVUEWbCO868FEr5GCtwTIlZFFwLHrwTsNR8is5G3bL4Y1suN6t2m5qy0jDJFFVKFPUpYuOUS23OKUTTpfJF2hkKZrDQjBaaEsyPhWaQ5iMpl-HmLaQ_6X9Y39bEdP0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Helin, Tapio</creator><creator>Kretschmann, Remo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5788-0008</orcidid><orcidid>https://orcid.org/0000-0002-4856-955X</orcidid></search><sort><creationdate>20220201</creationdate><title>Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems</title><author>Helin, Tapio ; Kretschmann, Remo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-dd2a43103a4f734ca0d9ba8e9467f084dc32d6477dff50c2748f43943edc40b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Errors</topic><topic>Estimates</topic><topic>Inverse problems</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise levels</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Perturbation</topic><topic>Simulation</topic><topic>Statistical inference</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helin, Tapio</creatorcontrib><creatorcontrib>Kretschmann, Remo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helin, Tapio</au><au>Kretschmann, Remo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>150</volume><issue>2</issue><spage>521</spage><epage>549</epage><pages>521-549</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915–971, 2020. https://doi.org/10.1007/s00211-020-01131-1 ), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01266-9</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-5788-0008</orcidid><orcidid>https://orcid.org/0000-0002-4856-955X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2022-02, Vol.150 (2), p.521-549
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2627177410
source SpringerNature Journals
subjects Approximation
Bayesian analysis
Errors
Estimates
Inverse problems
Mapping
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Noise levels
Nonlinearity
Numerical Analysis
Numerical and Computational Physics
Perturbation
Simulation
Statistical inference
Theoretical
title Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-asymptotic%20error%20estimates%20for%20the%20Laplace%20approximation%20in%20Bayesian%20inverse%20problems&rft.jtitle=Numerische%20Mathematik&rft.au=Helin,%20Tapio&rft.date=2022-02-01&rft.volume=150&rft.issue=2&rft.spage=521&rft.epage=549&rft.pages=521-549&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01266-9&rft_dat=%3Cproquest_cross%3E2627177410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627177410&rft_id=info:pmid/&rfr_iscdi=true