Periodic Golay pairs and pairwise balanced designs
In this paper we exploit a relationship between certain pairwise balanced designs with v points and periodic Golay pairs of length v , to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with v points under specific block conditions havi...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2022-02, Vol.55 (1), p.245-257 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 1 |
container_start_page | 245 |
container_title | Journal of algebraic combinatorics |
container_volume | 55 |
creator | Crnković, Dean Danilović, Doris Dumičić Egan, Ronan Švob, Andrea |
description | In this paper we exploit a relationship between certain pairwise balanced designs with
v
points and periodic Golay pairs of length
v
, to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with
v
points under specific block conditions having an assumed cyclic automorphism group, and using isomorph rejection which is compatible with equivalence of corresponding periodic Golay pairs, we complete a classification up to equivalence. This is done using the theory of orbit matrices and some compression techniques which apply to complementary sequences. We use similar tools to construct new periodic Golay pairs of lengths greater than 40 where classifications remain incomplete and demonstrate that under some extra conditions on its automorphism group, a periodic Golay pair of length 90 will not exist. Length 90 remains the smallest length for which existence of a periodic Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an added application. |
doi_str_mv | 10.1007/s10801-021-01084-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627177219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627177219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ef9e7f15b9d4d9d1eb7e2636c0127af1a5e856b0d94f0c5270399e64a7707c523</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFb_gKeA59WZTTabOUrRKhT0oOdlk52UlJjU3Rbpv3dtBG8ehnkD772BT4hrhFsEMHcRoQKUoNIkWUg4ETPURklCUqdiBqS0pIroXFzEuAEAqlDPhHrl0I2-a7Ll2LtDtnVdiJkb_FF9dZGz2vVuaNhnnmO3HuKlOGtdH_nqd8_F--PD2-JJrl6Wz4v7lWxyLHaSW2LToq7JF548cm1YlXnZACrjWnSaK13W4KloodHKQE7EZeGMAZPufC5upt5tGD_3HHd2M-7DkF5aVSqDxiik5FKTqwljjIFbuw3dhwsHi2B_2NiJjU1s7JGNhRTKp1BM5mHN4a_6n9Q3p81lSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627177219</pqid></control><display><type>article</type><title>Periodic Golay pairs and pairwise balanced designs</title><source>SpringerLink Journals (MCLS)</source><creator>Crnković, Dean ; Danilović, Doris Dumičić ; Egan, Ronan ; Švob, Andrea</creator><creatorcontrib>Crnković, Dean ; Danilović, Doris Dumičić ; Egan, Ronan ; Švob, Andrea</creatorcontrib><description>In this paper we exploit a relationship between certain pairwise balanced designs with
v
points and periodic Golay pairs of length
v
, to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with
v
points under specific block conditions having an assumed cyclic automorphism group, and using isomorph rejection which is compatible with equivalence of corresponding periodic Golay pairs, we complete a classification up to equivalence. This is done using the theory of orbit matrices and some compression techniques which apply to complementary sequences. We use similar tools to construct new periodic Golay pairs of lengths greater than 40 where classifications remain incomplete and demonstrate that under some extra conditions on its automorphism group, a periodic Golay pair of length 90 will not exist. Length 90 remains the smallest length for which existence of a periodic Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an added application.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-021-01084-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automorphisms ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Equivalence ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures</subject><ispartof>Journal of algebraic combinatorics, 2022-02, Vol.55 (1), p.245-257</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ef9e7f15b9d4d9d1eb7e2636c0127af1a5e856b0d94f0c5270399e64a7707c523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-021-01084-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-021-01084-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Crnković, Dean</creatorcontrib><creatorcontrib>Danilović, Doris Dumičić</creatorcontrib><creatorcontrib>Egan, Ronan</creatorcontrib><creatorcontrib>Švob, Andrea</creatorcontrib><title>Periodic Golay pairs and pairwise balanced designs</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>In this paper we exploit a relationship between certain pairwise balanced designs with
v
points and periodic Golay pairs of length
v
, to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with
v
points under specific block conditions having an assumed cyclic automorphism group, and using isomorph rejection which is compatible with equivalence of corresponding periodic Golay pairs, we complete a classification up to equivalence. This is done using the theory of orbit matrices and some compression techniques which apply to complementary sequences. We use similar tools to construct new periodic Golay pairs of lengths greater than 40 where classifications remain incomplete and demonstrate that under some extra conditions on its automorphism group, a periodic Golay pair of length 90 will not exist. Length 90 remains the smallest length for which existence of a periodic Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an added application.</description><subject>Automorphisms</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Equivalence</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFb_gKeA59WZTTabOUrRKhT0oOdlk52UlJjU3Rbpv3dtBG8ehnkD772BT4hrhFsEMHcRoQKUoNIkWUg4ETPURklCUqdiBqS0pIroXFzEuAEAqlDPhHrl0I2-a7Ll2LtDtnVdiJkb_FF9dZGz2vVuaNhnnmO3HuKlOGtdH_nqd8_F--PD2-JJrl6Wz4v7lWxyLHaSW2LToq7JF548cm1YlXnZACrjWnSaK13W4KloodHKQE7EZeGMAZPufC5upt5tGD_3HHd2M-7DkF5aVSqDxiik5FKTqwljjIFbuw3dhwsHi2B_2NiJjU1s7JGNhRTKp1BM5mHN4a_6n9Q3p81lSg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Crnković, Dean</creator><creator>Danilović, Doris Dumičić</creator><creator>Egan, Ronan</creator><creator>Švob, Andrea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Periodic Golay pairs and pairwise balanced designs</title><author>Crnković, Dean ; Danilović, Doris Dumičić ; Egan, Ronan ; Švob, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ef9e7f15b9d4d9d1eb7e2636c0127af1a5e856b0d94f0c5270399e64a7707c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Equivalence</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crnković, Dean</creatorcontrib><creatorcontrib>Danilović, Doris Dumičić</creatorcontrib><creatorcontrib>Egan, Ronan</creatorcontrib><creatorcontrib>Švob, Andrea</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crnković, Dean</au><au>Danilović, Doris Dumičić</au><au>Egan, Ronan</au><au>Švob, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Golay pairs and pairwise balanced designs</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>55</volume><issue>1</issue><spage>245</spage><epage>257</epage><pages>245-257</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>In this paper we exploit a relationship between certain pairwise balanced designs with
v
points and periodic Golay pairs of length
v
, to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with
v
points under specific block conditions having an assumed cyclic automorphism group, and using isomorph rejection which is compatible with equivalence of corresponding periodic Golay pairs, we complete a classification up to equivalence. This is done using the theory of orbit matrices and some compression techniques which apply to complementary sequences. We use similar tools to construct new periodic Golay pairs of lengths greater than 40 where classifications remain incomplete and demonstrate that under some extra conditions on its automorphism group, a periodic Golay pair of length 90 will not exist. Length 90 remains the smallest length for which existence of a periodic Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an added application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-021-01084-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2022-02, Vol.55 (1), p.245-257 |
issn | 0925-9899 1572-9192 |
language | eng |
recordid | cdi_proquest_journals_2627177219 |
source | SpringerLink Journals (MCLS) |
subjects | Automorphisms Combinatorics Computer Science Convex and Discrete Geometry Equivalence Group Theory and Generalizations Lattices Mathematics Mathematics and Statistics Order Ordered Algebraic Structures |
title | Periodic Golay pairs and pairwise balanced designs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Golay%20pairs%20and%20pairwise%20balanced%20designs&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Crnkovi%C4%87,%20Dean&rft.date=2022-02-01&rft.volume=55&rft.issue=1&rft.spage=245&rft.epage=257&rft.pages=245-257&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-021-01084-0&rft_dat=%3Cproquest_cross%3E2627177219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627177219&rft_id=info:pmid/&rfr_iscdi=true |