Periodic Golay pairs and pairwise balanced designs

In this paper we exploit a relationship between certain pairwise balanced designs with v points and periodic Golay pairs of length v , to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with v points under specific block conditions havi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2022-02, Vol.55 (1), p.245-257
Hauptverfasser: Crnković, Dean, Danilović, Doris Dumičić, Egan, Ronan, Švob, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 1
container_start_page 245
container_title Journal of algebraic combinatorics
container_volume 55
creator Crnković, Dean
Danilović, Doris Dumičić
Egan, Ronan
Švob, Andrea
description In this paper we exploit a relationship between certain pairwise balanced designs with v points and periodic Golay pairs of length v , to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with v points under specific block conditions having an assumed cyclic automorphism group, and using isomorph rejection which is compatible with equivalence of corresponding periodic Golay pairs, we complete a classification up to equivalence. This is done using the theory of orbit matrices and some compression techniques which apply to complementary sequences. We use similar tools to construct new periodic Golay pairs of lengths greater than 40 where classifications remain incomplete and demonstrate that under some extra conditions on its automorphism group, a periodic Golay pair of length 90 will not exist. Length 90 remains the smallest length for which existence of a periodic Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an added application.
doi_str_mv 10.1007/s10801-021-01084-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627177219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627177219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ef9e7f15b9d4d9d1eb7e2636c0127af1a5e856b0d94f0c5270399e64a7707c523</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFb_gKeA59WZTTabOUrRKhT0oOdlk52UlJjU3Rbpv3dtBG8ehnkD772BT4hrhFsEMHcRoQKUoNIkWUg4ETPURklCUqdiBqS0pIroXFzEuAEAqlDPhHrl0I2-a7Ll2LtDtnVdiJkb_FF9dZGz2vVuaNhnnmO3HuKlOGtdH_nqd8_F--PD2-JJrl6Wz4v7lWxyLHaSW2LToq7JF548cm1YlXnZACrjWnSaK13W4KloodHKQE7EZeGMAZPufC5upt5tGD_3HHd2M-7DkF5aVSqDxiik5FKTqwljjIFbuw3dhwsHi2B_2NiJjU1s7JGNhRTKp1BM5mHN4a_6n9Q3p81lSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627177219</pqid></control><display><type>article</type><title>Periodic Golay pairs and pairwise balanced designs</title><source>SpringerLink Journals (MCLS)</source><creator>Crnković, Dean ; Danilović, Doris Dumičić ; Egan, Ronan ; Švob, Andrea</creator><creatorcontrib>Crnković, Dean ; Danilović, Doris Dumičić ; Egan, Ronan ; Švob, Andrea</creatorcontrib><description>In this paper we exploit a relationship between certain pairwise balanced designs with v points and periodic Golay pairs of length v , to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with v points under specific block conditions having an assumed cyclic automorphism group, and using isomorph rejection which is compatible with equivalence of corresponding periodic Golay pairs, we complete a classification up to equivalence. This is done using the theory of orbit matrices and some compression techniques which apply to complementary sequences. We use similar tools to construct new periodic Golay pairs of lengths greater than 40 where classifications remain incomplete and demonstrate that under some extra conditions on its automorphism group, a periodic Golay pair of length 90 will not exist. Length 90 remains the smallest length for which existence of a periodic Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an added application.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-021-01084-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automorphisms ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Equivalence ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures</subject><ispartof>Journal of algebraic combinatorics, 2022-02, Vol.55 (1), p.245-257</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ef9e7f15b9d4d9d1eb7e2636c0127af1a5e856b0d94f0c5270399e64a7707c523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-021-01084-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-021-01084-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Crnković, Dean</creatorcontrib><creatorcontrib>Danilović, Doris Dumičić</creatorcontrib><creatorcontrib>Egan, Ronan</creatorcontrib><creatorcontrib>Švob, Andrea</creatorcontrib><title>Periodic Golay pairs and pairwise balanced designs</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>In this paper we exploit a relationship between certain pairwise balanced designs with v points and periodic Golay pairs of length v , to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with v points under specific block conditions having an assumed cyclic automorphism group, and using isomorph rejection which is compatible with equivalence of corresponding periodic Golay pairs, we complete a classification up to equivalence. This is done using the theory of orbit matrices and some compression techniques which apply to complementary sequences. We use similar tools to construct new periodic Golay pairs of lengths greater than 40 where classifications remain incomplete and demonstrate that under some extra conditions on its automorphism group, a periodic Golay pair of length 90 will not exist. Length 90 remains the smallest length for which existence of a periodic Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an added application.</description><subject>Automorphisms</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Equivalence</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFb_gKeA59WZTTabOUrRKhT0oOdlk52UlJjU3Rbpv3dtBG8ehnkD772BT4hrhFsEMHcRoQKUoNIkWUg4ETPURklCUqdiBqS0pIroXFzEuAEAqlDPhHrl0I2-a7Ll2LtDtnVdiJkb_FF9dZGz2vVuaNhnnmO3HuKlOGtdH_nqd8_F--PD2-JJrl6Wz4v7lWxyLHaSW2LToq7JF548cm1YlXnZACrjWnSaK13W4KloodHKQE7EZeGMAZPufC5upt5tGD_3HHd2M-7DkF5aVSqDxiik5FKTqwljjIFbuw3dhwsHi2B_2NiJjU1s7JGNhRTKp1BM5mHN4a_6n9Q3p81lSg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Crnković, Dean</creator><creator>Danilović, Doris Dumičić</creator><creator>Egan, Ronan</creator><creator>Švob, Andrea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Periodic Golay pairs and pairwise balanced designs</title><author>Crnković, Dean ; Danilović, Doris Dumičić ; Egan, Ronan ; Švob, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ef9e7f15b9d4d9d1eb7e2636c0127af1a5e856b0d94f0c5270399e64a7707c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Equivalence</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crnković, Dean</creatorcontrib><creatorcontrib>Danilović, Doris Dumičić</creatorcontrib><creatorcontrib>Egan, Ronan</creatorcontrib><creatorcontrib>Švob, Andrea</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crnković, Dean</au><au>Danilović, Doris Dumičić</au><au>Egan, Ronan</au><au>Švob, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Golay pairs and pairwise balanced designs</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>55</volume><issue>1</issue><spage>245</spage><epage>257</epage><pages>245-257</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>In this paper we exploit a relationship between certain pairwise balanced designs with v points and periodic Golay pairs of length v , to classify periodic Golay pairs of length less than 40. In particular, we construct all pairwise balanced designs with v points under specific block conditions having an assumed cyclic automorphism group, and using isomorph rejection which is compatible with equivalence of corresponding periodic Golay pairs, we complete a classification up to equivalence. This is done using the theory of orbit matrices and some compression techniques which apply to complementary sequences. We use similar tools to construct new periodic Golay pairs of lengths greater than 40 where classifications remain incomplete and demonstrate that under some extra conditions on its automorphism group, a periodic Golay pair of length 90 will not exist. Length 90 remains the smallest length for which existence of a periodic Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an added application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-021-01084-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2022-02, Vol.55 (1), p.245-257
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_2627177219
source SpringerLink Journals (MCLS)
subjects Automorphisms
Combinatorics
Computer Science
Convex and Discrete Geometry
Equivalence
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
title Periodic Golay pairs and pairwise balanced designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Golay%20pairs%20and%20pairwise%20balanced%20designs&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Crnkovi%C4%87,%20Dean&rft.date=2022-02-01&rft.volume=55&rft.issue=1&rft.spage=245&rft.epage=257&rft.pages=245-257&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-021-01084-0&rft_dat=%3Cproquest_cross%3E2627177219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627177219&rft_id=info:pmid/&rfr_iscdi=true