Characterization of hydrothermal alteration along geothermal wells using unsupervised machine-learning analysis of X-ray powder diffraction data
Zonal distribution of hydrothermal alteration in and around geothermal fields is important for understanding the hydrothermal environment. In this study, we assessed the performance of three unsupervised classification algorithms—K-mean clustering, the Gaussian mixture model, and agglomerative clust...
Gespeichert in:
Veröffentlicht in: | Earth science informatics 2022-03, Vol.15 (1), p.73-87 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Earth science informatics |
container_volume | 15 |
creator | Ishitsuka, Kazuya Ojima, Hiroki Mogi, Toru Kajiwara, Tatsuya Sugimoto, Takeshi Asanuma, Hiroshi |
description | Zonal distribution of hydrothermal alteration in and around geothermal fields is important for understanding the hydrothermal environment. In this study, we assessed the performance of three unsupervised classification algorithms—K-mean clustering, the Gaussian mixture model, and agglomerative clustering—in automated categorization of alteration minerals along wells. As quantitative data for classification, we focused on the quartz indices of alteration minerals obtained from rock cuttings, which were calculated from X-ray powder diffraction measurements. The classification algorithms were first examined by applying synthetic data and then applied to data on rock cuttings obtained from two wells in the Hachimantai geothermal field in Japan. Of the three algorithms, our results showed that the Gaussian mixture model provides classes that are reliable and relatively easy to interpret. Furthermore, an integrated interpretation of different classification results provided more detailed features buried within the quartz indices. Application to the Hachimantai geothermal field data showed that lithological boundaries underpin the data and revealed the lateral connection between wells. The method’s performance is underscored by its ability to interpret multi-component data related to quartz indices. |
doi_str_mv | 10.1007/s12145-021-00694-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627009705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627009705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-6aa40ef388439f4e10e547212b0c2c24a87dadeabd05eef529c93b775d6a25023</originalsourceid><addsrcrecordid>eNp9UMlKxEAQDaLgMPoDnho8t_aS9SiDGwx4UfDWVNKVSUsmPXYnDvEr_GQ7RsabpyrqLbx6UXTB2RVnLLv2XPA4oUxwylhaxFQeRQuep-EU5_z4sGfyNDr33pRMcpFKIfJF9LVqwEHVozOf0BvbEVuTZtTO9g26LbQE2gDOELS225ANHrA9tq0ngzfhPHR-2KH7MB412ULVmA5pi-C6CYUO2tEbP9m_Ugcj2dm9Rke0qespwOSvoYez6KSG1uP571xGL3e3z6sHun66f1zdrGkV_uhpChAzrGWex7KoY-QMkzgTXJSsEpWIIc80aIRSswSxTkRRFbLMskSnIBIm5DK6nH13zr4P6Hv1ZgcXUnolUpExVmQsCSwxsypnvXdYq50zW3Cj4kxN5au5fBXKVz_lKxlEchb5QO426P6s_1F9A59ki1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627009705</pqid></control><display><type>article</type><title>Characterization of hydrothermal alteration along geothermal wells using unsupervised machine-learning analysis of X-ray powder diffraction data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ishitsuka, Kazuya ; Ojima, Hiroki ; Mogi, Toru ; Kajiwara, Tatsuya ; Sugimoto, Takeshi ; Asanuma, Hiroshi</creator><creatorcontrib>Ishitsuka, Kazuya ; Ojima, Hiroki ; Mogi, Toru ; Kajiwara, Tatsuya ; Sugimoto, Takeshi ; Asanuma, Hiroshi</creatorcontrib><description>Zonal distribution of hydrothermal alteration in and around geothermal fields is important for understanding the hydrothermal environment. In this study, we assessed the performance of three unsupervised classification algorithms—K-mean clustering, the Gaussian mixture model, and agglomerative clustering—in automated categorization of alteration minerals along wells. As quantitative data for classification, we focused on the quartz indices of alteration minerals obtained from rock cuttings, which were calculated from X-ray powder diffraction measurements. The classification algorithms were first examined by applying synthetic data and then applied to data on rock cuttings obtained from two wells in the Hachimantai geothermal field in Japan. Of the three algorithms, our results showed that the Gaussian mixture model provides classes that are reliable and relatively easy to interpret. Furthermore, an integrated interpretation of different classification results provided more detailed features buried within the quartz indices. Application to the Hachimantai geothermal field data showed that lithological boundaries underpin the data and revealed the lateral connection between wells. The method’s performance is underscored by its ability to interpret multi-component data related to quartz indices.</description><identifier>ISSN: 1865-0473</identifier><identifier>EISSN: 1865-0481</identifier><identifier>DOI: 10.1007/s12145-021-00694-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Classification ; Clustering ; Cuttings ; Diffraction ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Geothermal fields ; Information Systems Applications (incl.Internet) ; Machine learning ; Minerals ; Ontology ; Performance assessment ; Probabilistic models ; Quartz ; Research Article ; Rocks ; Simulation and Modeling ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Unsupervised learning ; Wells ; X ray powder diffraction ; Zonal distribution</subject><ispartof>Earth science informatics, 2022-03, Vol.15 (1), p.73-87</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-6aa40ef388439f4e10e547212b0c2c24a87dadeabd05eef529c93b775d6a25023</citedby><cites>FETCH-LOGICAL-c473t-6aa40ef388439f4e10e547212b0c2c24a87dadeabd05eef529c93b775d6a25023</cites><orcidid>0000-0002-1836-5839 ; 0000-0003-4462-4598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12145-021-00694-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12145-021-00694-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ishitsuka, Kazuya</creatorcontrib><creatorcontrib>Ojima, Hiroki</creatorcontrib><creatorcontrib>Mogi, Toru</creatorcontrib><creatorcontrib>Kajiwara, Tatsuya</creatorcontrib><creatorcontrib>Sugimoto, Takeshi</creatorcontrib><creatorcontrib>Asanuma, Hiroshi</creatorcontrib><title>Characterization of hydrothermal alteration along geothermal wells using unsupervised machine-learning analysis of X-ray powder diffraction data</title><title>Earth science informatics</title><addtitle>Earth Sci Inform</addtitle><description>Zonal distribution of hydrothermal alteration in and around geothermal fields is important for understanding the hydrothermal environment. In this study, we assessed the performance of three unsupervised classification algorithms—K-mean clustering, the Gaussian mixture model, and agglomerative clustering—in automated categorization of alteration minerals along wells. As quantitative data for classification, we focused on the quartz indices of alteration minerals obtained from rock cuttings, which were calculated from X-ray powder diffraction measurements. The classification algorithms were first examined by applying synthetic data and then applied to data on rock cuttings obtained from two wells in the Hachimantai geothermal field in Japan. Of the three algorithms, our results showed that the Gaussian mixture model provides classes that are reliable and relatively easy to interpret. Furthermore, an integrated interpretation of different classification results provided more detailed features buried within the quartz indices. Application to the Hachimantai geothermal field data showed that lithological boundaries underpin the data and revealed the lateral connection between wells. The method’s performance is underscored by its ability to interpret multi-component data related to quartz indices.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Cuttings</subject><subject>Diffraction</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Geothermal fields</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Machine learning</subject><subject>Minerals</subject><subject>Ontology</subject><subject>Performance assessment</subject><subject>Probabilistic models</subject><subject>Quartz</subject><subject>Research Article</subject><subject>Rocks</subject><subject>Simulation and Modeling</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Unsupervised learning</subject><subject>Wells</subject><subject>X ray powder diffraction</subject><subject>Zonal distribution</subject><issn>1865-0473</issn><issn>1865-0481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UMlKxEAQDaLgMPoDnho8t_aS9SiDGwx4UfDWVNKVSUsmPXYnDvEr_GQ7RsabpyrqLbx6UXTB2RVnLLv2XPA4oUxwylhaxFQeRQuep-EU5_z4sGfyNDr33pRMcpFKIfJF9LVqwEHVozOf0BvbEVuTZtTO9g26LbQE2gDOELS225ANHrA9tq0ngzfhPHR-2KH7MB412ULVmA5pi-C6CYUO2tEbP9m_Ugcj2dm9Rke0qespwOSvoYez6KSG1uP571xGL3e3z6sHun66f1zdrGkV_uhpChAzrGWex7KoY-QMkzgTXJSsEpWIIc80aIRSswSxTkRRFbLMskSnIBIm5DK6nH13zr4P6Hv1ZgcXUnolUpExVmQsCSwxsypnvXdYq50zW3Cj4kxN5au5fBXKVz_lKxlEchb5QO426P6s_1F9A59ki1E</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ishitsuka, Kazuya</creator><creator>Ojima, Hiroki</creator><creator>Mogi, Toru</creator><creator>Kajiwara, Tatsuya</creator><creator>Sugimoto, Takeshi</creator><creator>Asanuma, Hiroshi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1836-5839</orcidid><orcidid>https://orcid.org/0000-0003-4462-4598</orcidid></search><sort><creationdate>20220301</creationdate><title>Characterization of hydrothermal alteration along geothermal wells using unsupervised machine-learning analysis of X-ray powder diffraction data</title><author>Ishitsuka, Kazuya ; Ojima, Hiroki ; Mogi, Toru ; Kajiwara, Tatsuya ; Sugimoto, Takeshi ; Asanuma, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-6aa40ef388439f4e10e547212b0c2c24a87dadeabd05eef529c93b775d6a25023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Cuttings</topic><topic>Diffraction</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Geothermal fields</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Machine learning</topic><topic>Minerals</topic><topic>Ontology</topic><topic>Performance assessment</topic><topic>Probabilistic models</topic><topic>Quartz</topic><topic>Research Article</topic><topic>Rocks</topic><topic>Simulation and Modeling</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Unsupervised learning</topic><topic>Wells</topic><topic>X ray powder diffraction</topic><topic>Zonal distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishitsuka, Kazuya</creatorcontrib><creatorcontrib>Ojima, Hiroki</creatorcontrib><creatorcontrib>Mogi, Toru</creatorcontrib><creatorcontrib>Kajiwara, Tatsuya</creatorcontrib><creatorcontrib>Sugimoto, Takeshi</creatorcontrib><creatorcontrib>Asanuma, Hiroshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Earth science informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishitsuka, Kazuya</au><au>Ojima, Hiroki</au><au>Mogi, Toru</au><au>Kajiwara, Tatsuya</au><au>Sugimoto, Takeshi</au><au>Asanuma, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of hydrothermal alteration along geothermal wells using unsupervised machine-learning analysis of X-ray powder diffraction data</atitle><jtitle>Earth science informatics</jtitle><stitle>Earth Sci Inform</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>73</spage><epage>87</epage><pages>73-87</pages><issn>1865-0473</issn><eissn>1865-0481</eissn><abstract>Zonal distribution of hydrothermal alteration in and around geothermal fields is important for understanding the hydrothermal environment. In this study, we assessed the performance of three unsupervised classification algorithms—K-mean clustering, the Gaussian mixture model, and agglomerative clustering—in automated categorization of alteration minerals along wells. As quantitative data for classification, we focused on the quartz indices of alteration minerals obtained from rock cuttings, which were calculated from X-ray powder diffraction measurements. The classification algorithms were first examined by applying synthetic data and then applied to data on rock cuttings obtained from two wells in the Hachimantai geothermal field in Japan. Of the three algorithms, our results showed that the Gaussian mixture model provides classes that are reliable and relatively easy to interpret. Furthermore, an integrated interpretation of different classification results provided more detailed features buried within the quartz indices. Application to the Hachimantai geothermal field data showed that lithological boundaries underpin the data and revealed the lateral connection between wells. The method’s performance is underscored by its ability to interpret multi-component data related to quartz indices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12145-021-00694-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1836-5839</orcidid><orcidid>https://orcid.org/0000-0003-4462-4598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-0473 |
ispartof | Earth science informatics, 2022-03, Vol.15 (1), p.73-87 |
issn | 1865-0473 1865-0481 |
language | eng |
recordid | cdi_proquest_journals_2627009705 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Classification Clustering Cuttings Diffraction Earth and Environmental Science Earth Sciences Earth System Sciences Geothermal fields Information Systems Applications (incl.Internet) Machine learning Minerals Ontology Performance assessment Probabilistic models Quartz Research Article Rocks Simulation and Modeling Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Unsupervised learning Wells X ray powder diffraction Zonal distribution |
title | Characterization of hydrothermal alteration along geothermal wells using unsupervised machine-learning analysis of X-ray powder diffraction data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20hydrothermal%20alteration%20along%20geothermal%20wells%20using%20unsupervised%20machine-learning%20analysis%20of%20X-ray%20powder%20diffraction%20data&rft.jtitle=Earth%20science%20informatics&rft.au=Ishitsuka,%20Kazuya&rft.date=2022-03-01&rft.volume=15&rft.issue=1&rft.spage=73&rft.epage=87&rft.pages=73-87&rft.issn=1865-0473&rft.eissn=1865-0481&rft_id=info:doi/10.1007/s12145-021-00694-3&rft_dat=%3Cproquest_cross%3E2627009705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627009705&rft_id=info:pmid/&rfr_iscdi=true |