Scalp EEG-Based Pain Detection Using Convolutional Neural Network
Pain is an integrative phenomenon coupled with dynamic interactions between sensory and contextual processes in the brain, often associated with detectable neurophysiological changes. Recent advances in brain activity recording tools and machine learning technologies have intrigued research and deve...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.274-285 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 285 |
---|---|
container_issue | |
container_start_page | 274 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 30 |
creator | Chen, Duo Zhang, Haihong Kavitha, Perumpadappil Thomas Loy, Fong Ling Ng, Soon Huat Wang, Chuanchu Phua, Kok Soon Tjan, Soon Yin Yang, Su-Yin Guan, Cuntai |
description | Pain is an integrative phenomenon coupled with dynamic interactions between sensory and contextual processes in the brain, often associated with detectable neurophysiological changes. Recent advances in brain activity recording tools and machine learning technologies have intrigued research and development of neurocomputing techniques for objective and neurophysiology-based pain detection. This paper proposes a pain detection framework based on Electroencephalogram (EEG) and deep convolutional neural networks (CNN). The feasibility of CNN is investigated for distinguishing induced pain state from resting state in the recruitment of 10 chronic back pain patients. The experimental study recorded EEG signals in two phases: 1. movement stimulation (MS), where induces back pain by executing predefined movement tasks; 2. video stimulation (VS), where induces back pain perception by watching a set of video clips. A multi-layer CNN classifies the EEG segments during the resting state and the pain state. The novel approach offers high and robust performance and hence is significant in building a powerful pain detection algorithm. The area under the receiver operating characteristic curve (AUC) of our approach is 0.83 ± 0.09 and 0.81 ± 0.15, in MS and VS, respectively, higher than the state-of-the-art approaches. The sub-brain-areas are also analyzed, to examine distinct brain topographies relevant for pain detection. The results indicate that MS-induced pain tends to evoke a generalized brain area, while the evoked area is relatively partial under VS-induced pain. This work may provide a new solution for researchers and clinical practitioners on pain detection. |
doi_str_mv | 10.1109/TNSRE.2022.3147673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2626973015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9696316</ieee_id><doaj_id>oai_doaj_org_article_27fe7a266ffe4884819500ee1a6178d0</doaj_id><sourcerecordid>2626973015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-4869fe0b62dfb6d11105d013b1858653ddfc48bb94fe9422224182d601ee94273</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERUvhD4CEInHhkq3H3zmWZSmVqoJoe7aceFxlycaLnYD49yS72z3Ul_HMPPPKnpeQd0AXALS6uL-9-7laMMrYgoPQSvMX5AykNCVlQF_Ody5KwRk9Ja9zXlMKWkn9ipxySU1lFD0jl3eN67bFanVVfnYZffHDtX3xBQdshjb2xUNu-8diGfs_sRvniuuKWxzTLgx_Y_r1hpwE12V8e4jn5OHr6n75rbz5fnW9vLwpG6FgKIVRVUBaK-ZDrTxMP5CeAq_BSKMk9z40wtR1JQJWgk1HgGFeUcA51_ycXO91fXRru03txqV_NrrW7goxPVqXhrbp0DIdUDumVAgojBEGKkkpIjgF2ng6aX3aa21T_D1iHuymzQ12nesxjtkyxbgxyjA5oR-foes4pmkNO0pVmlOYKbanmhRzThiODwRqZ7Psziw7m2UPZk1DHw7SY71Bfxx5cmcC3u-BFhGP7UpVioPi_wHkKZTJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626973015</pqid></control><display><type>article</type><title>Scalp EEG-Based Pain Detection Using Convolutional Neural Network</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Duo ; Zhang, Haihong ; Kavitha, Perumpadappil Thomas ; Loy, Fong Ling ; Ng, Soon Huat ; Wang, Chuanchu ; Phua, Kok Soon ; Tjan, Soon Yin ; Yang, Su-Yin ; Guan, Cuntai</creator><creatorcontrib>Chen, Duo ; Zhang, Haihong ; Kavitha, Perumpadappil Thomas ; Loy, Fong Ling ; Ng, Soon Huat ; Wang, Chuanchu ; Phua, Kok Soon ; Tjan, Soon Yin ; Yang, Su-Yin ; Guan, Cuntai</creatorcontrib><description>Pain is an integrative phenomenon coupled with dynamic interactions between sensory and contextual processes in the brain, often associated with detectable neurophysiological changes. Recent advances in brain activity recording tools and machine learning technologies have intrigued research and development of neurocomputing techniques for objective and neurophysiology-based pain detection. This paper proposes a pain detection framework based on Electroencephalogram (EEG) and deep convolutional neural networks (CNN). The feasibility of CNN is investigated for distinguishing induced pain state from resting state in the recruitment of 10 chronic back pain patients. The experimental study recorded EEG signals in two phases: 1. movement stimulation (MS), where induces back pain by executing predefined movement tasks; 2. video stimulation (VS), where induces back pain perception by watching a set of video clips. A multi-layer CNN classifies the EEG segments during the resting state and the pain state. The novel approach offers high and robust performance and hence is significant in building a powerful pain detection algorithm. The area under the receiver operating characteristic curve (AUC) of our approach is 0.83 ± 0.09 and 0.81 ± 0.15, in MS and VS, respectively, higher than the state-of-the-art approaches. The sub-brain-areas are also analyzed, to examine distinct brain topographies relevant for pain detection. The results indicate that MS-induced pain tends to evoke a generalized brain area, while the evoked area is relatively partial under VS-induced pain. This work may provide a new solution for researchers and clinical practitioners on pain detection.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3147673</identifier><identifier>PMID: 35089860</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Back pain ; Brain ; Brain modeling ; chronic pain ; CNN ; Convolutional neural networks ; EEG ; Electroencephalography ; Electroencephalography - methods ; Humans ; IEEE transactions ; Learning algorithms ; Machine Learning ; Multilayers ; Neural networks ; Neural Networks, Computer ; Neurocomputing ; Neurophysiology ; Pain ; Pain - diagnosis ; Pain detection ; Pain perception ; R&D ; Research & development ; Scalp ; Stimulation ; Task analysis ; Video data</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.274-285</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-4869fe0b62dfb6d11105d013b1858653ddfc48bb94fe9422224182d601ee94273</citedby><cites>FETCH-LOGICAL-c461t-4869fe0b62dfb6d11105d013b1858653ddfc48bb94fe9422224182d601ee94273</cites><orcidid>0000-0001-7451-7764 ; 0000-0002-8571-5675 ; 0000-0002-0872-3276 ; 0000-0002-8134-2242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35089860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Duo</creatorcontrib><creatorcontrib>Zhang, Haihong</creatorcontrib><creatorcontrib>Kavitha, Perumpadappil Thomas</creatorcontrib><creatorcontrib>Loy, Fong Ling</creatorcontrib><creatorcontrib>Ng, Soon Huat</creatorcontrib><creatorcontrib>Wang, Chuanchu</creatorcontrib><creatorcontrib>Phua, Kok Soon</creatorcontrib><creatorcontrib>Tjan, Soon Yin</creatorcontrib><creatorcontrib>Yang, Su-Yin</creatorcontrib><creatorcontrib>Guan, Cuntai</creatorcontrib><title>Scalp EEG-Based Pain Detection Using Convolutional Neural Network</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Pain is an integrative phenomenon coupled with dynamic interactions between sensory and contextual processes in the brain, often associated with detectable neurophysiological changes. Recent advances in brain activity recording tools and machine learning technologies have intrigued research and development of neurocomputing techniques for objective and neurophysiology-based pain detection. This paper proposes a pain detection framework based on Electroencephalogram (EEG) and deep convolutional neural networks (CNN). The feasibility of CNN is investigated for distinguishing induced pain state from resting state in the recruitment of 10 chronic back pain patients. The experimental study recorded EEG signals in two phases: 1. movement stimulation (MS), where induces back pain by executing predefined movement tasks; 2. video stimulation (VS), where induces back pain perception by watching a set of video clips. A multi-layer CNN classifies the EEG segments during the resting state and the pain state. The novel approach offers high and robust performance and hence is significant in building a powerful pain detection algorithm. The area under the receiver operating characteristic curve (AUC) of our approach is 0.83 ± 0.09 and 0.81 ± 0.15, in MS and VS, respectively, higher than the state-of-the-art approaches. The sub-brain-areas are also analyzed, to examine distinct brain topographies relevant for pain detection. The results indicate that MS-induced pain tends to evoke a generalized brain area, while the evoked area is relatively partial under VS-induced pain. This work may provide a new solution for researchers and clinical practitioners on pain detection.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back pain</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>chronic pain</subject><subject>CNN</subject><subject>Convolutional neural networks</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Humans</subject><subject>IEEE transactions</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurocomputing</subject><subject>Neurophysiology</subject><subject>Pain</subject><subject>Pain - diagnosis</subject><subject>Pain detection</subject><subject>Pain perception</subject><subject>R&D</subject><subject>Research & development</subject><subject>Scalp</subject><subject>Stimulation</subject><subject>Task analysis</subject><subject>Video data</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhi1ERUvhD4CEInHhkq3H3zmWZSmVqoJoe7aceFxlycaLnYD49yS72z3Ul_HMPPPKnpeQd0AXALS6uL-9-7laMMrYgoPQSvMX5AykNCVlQF_Ody5KwRk9Ja9zXlMKWkn9ipxySU1lFD0jl3eN67bFanVVfnYZffHDtX3xBQdshjb2xUNu-8diGfs_sRvniuuKWxzTLgx_Y_r1hpwE12V8e4jn5OHr6n75rbz5fnW9vLwpG6FgKIVRVUBaK-ZDrTxMP5CeAq_BSKMk9z40wtR1JQJWgk1HgGFeUcA51_ycXO91fXRru03txqV_NrrW7goxPVqXhrbp0DIdUDumVAgojBEGKkkpIjgF2ng6aX3aa21T_D1iHuymzQ12nesxjtkyxbgxyjA5oR-foes4pmkNO0pVmlOYKbanmhRzThiODwRqZ7Psziw7m2UPZk1DHw7SY71Bfxx5cmcC3u-BFhGP7UpVioPi_wHkKZTJ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chen, Duo</creator><creator>Zhang, Haihong</creator><creator>Kavitha, Perumpadappil Thomas</creator><creator>Loy, Fong Ling</creator><creator>Ng, Soon Huat</creator><creator>Wang, Chuanchu</creator><creator>Phua, Kok Soon</creator><creator>Tjan, Soon Yin</creator><creator>Yang, Su-Yin</creator><creator>Guan, Cuntai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7451-7764</orcidid><orcidid>https://orcid.org/0000-0002-8571-5675</orcidid><orcidid>https://orcid.org/0000-0002-0872-3276</orcidid><orcidid>https://orcid.org/0000-0002-8134-2242</orcidid></search><sort><creationdate>2022</creationdate><title>Scalp EEG-Based Pain Detection Using Convolutional Neural Network</title><author>Chen, Duo ; Zhang, Haihong ; Kavitha, Perumpadappil Thomas ; Loy, Fong Ling ; Ng, Soon Huat ; Wang, Chuanchu ; Phua, Kok Soon ; Tjan, Soon Yin ; Yang, Su-Yin ; Guan, Cuntai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-4869fe0b62dfb6d11105d013b1858653ddfc48bb94fe9422224182d601ee94273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back pain</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>chronic pain</topic><topic>CNN</topic><topic>Convolutional neural networks</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Humans</topic><topic>IEEE transactions</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurocomputing</topic><topic>Neurophysiology</topic><topic>Pain</topic><topic>Pain - diagnosis</topic><topic>Pain detection</topic><topic>Pain perception</topic><topic>R&D</topic><topic>Research & development</topic><topic>Scalp</topic><topic>Stimulation</topic><topic>Task analysis</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Duo</creatorcontrib><creatorcontrib>Zhang, Haihong</creatorcontrib><creatorcontrib>Kavitha, Perumpadappil Thomas</creatorcontrib><creatorcontrib>Loy, Fong Ling</creatorcontrib><creatorcontrib>Ng, Soon Huat</creatorcontrib><creatorcontrib>Wang, Chuanchu</creatorcontrib><creatorcontrib>Phua, Kok Soon</creatorcontrib><creatorcontrib>Tjan, Soon Yin</creatorcontrib><creatorcontrib>Yang, Su-Yin</creatorcontrib><creatorcontrib>Guan, Cuntai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Duo</au><au>Zhang, Haihong</au><au>Kavitha, Perumpadappil Thomas</au><au>Loy, Fong Ling</au><au>Ng, Soon Huat</au><au>Wang, Chuanchu</au><au>Phua, Kok Soon</au><au>Tjan, Soon Yin</au><au>Yang, Su-Yin</au><au>Guan, Cuntai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalp EEG-Based Pain Detection Using Convolutional Neural Network</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>274</spage><epage>285</epage><pages>274-285</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Pain is an integrative phenomenon coupled with dynamic interactions between sensory and contextual processes in the brain, often associated with detectable neurophysiological changes. Recent advances in brain activity recording tools and machine learning technologies have intrigued research and development of neurocomputing techniques for objective and neurophysiology-based pain detection. This paper proposes a pain detection framework based on Electroencephalogram (EEG) and deep convolutional neural networks (CNN). The feasibility of CNN is investigated for distinguishing induced pain state from resting state in the recruitment of 10 chronic back pain patients. The experimental study recorded EEG signals in two phases: 1. movement stimulation (MS), where induces back pain by executing predefined movement tasks; 2. video stimulation (VS), where induces back pain perception by watching a set of video clips. A multi-layer CNN classifies the EEG segments during the resting state and the pain state. The novel approach offers high and robust performance and hence is significant in building a powerful pain detection algorithm. The area under the receiver operating characteristic curve (AUC) of our approach is 0.83 ± 0.09 and 0.81 ± 0.15, in MS and VS, respectively, higher than the state-of-the-art approaches. The sub-brain-areas are also analyzed, to examine distinct brain topographies relevant for pain detection. The results indicate that MS-induced pain tends to evoke a generalized brain area, while the evoked area is relatively partial under VS-induced pain. This work may provide a new solution for researchers and clinical practitioners on pain detection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35089860</pmid><doi>10.1109/TNSRE.2022.3147673</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7451-7764</orcidid><orcidid>https://orcid.org/0000-0002-8571-5675</orcidid><orcidid>https://orcid.org/0000-0002-0872-3276</orcidid><orcidid>https://orcid.org/0000-0002-8134-2242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.274-285 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_proquest_journals_2626973015 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial neural networks Back pain Brain Brain modeling chronic pain CNN Convolutional neural networks EEG Electroencephalography Electroencephalography - methods Humans IEEE transactions Learning algorithms Machine Learning Multilayers Neural networks Neural Networks, Computer Neurocomputing Neurophysiology Pain Pain - diagnosis Pain detection Pain perception R&D Research & development Scalp Stimulation Task analysis Video data |
title | Scalp EEG-Based Pain Detection Using Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalp%20EEG-Based%20Pain%20Detection%20Using%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Chen,%20Duo&rft.date=2022&rft.volume=30&rft.spage=274&rft.epage=285&rft.pages=274-285&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3147673&rft_dat=%3Cproquest_ieee_%3E2626973015%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626973015&rft_id=info:pmid/35089860&rft_ieee_id=9696316&rft_doaj_id=oai_doaj_org_article_27fe7a266ffe4884819500ee1a6178d0&rfr_iscdi=true |