Pyramidal Image Segmentation Based on U-Net for Automatic Multiscale Crater Extraction

To extract craters with a radius greater than 10 km more effectively from lunar digital elevation maps, pyramidal image segmentation based on the U-Net model is proposed, and the conversion relationship between the multilayer image pyramid and the geographic coordinates of the crater is established....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2022-01, Vol.34 (1), p.237
Hauptverfasser: Hong, Zhonghua, Fan, Ziyang, Zhou, Ruyan, Pan, Haiyan, Zhang, Yun, Han, Yanling, Wang, Jing, Yang, Shuhu, Jin, Yanmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 237
container_title Sensors and materials
container_volume 34
creator Hong, Zhonghua
Fan, Ziyang
Zhou, Ruyan
Pan, Haiyan
Zhang, Yun
Han, Yanling
Wang, Jing
Yang, Shuhu
Jin, Yanmin
description To extract craters with a radius greater than 10 km more effectively from lunar digital elevation maps, pyramidal image segmentation based on the U-Net model is proposed, and the conversion relationship between the multilayer image pyramid and the geographic coordinates of the crater is established. The crater image pyramid method ensures the full coverage of the study area with a small number of images and that each crater exists in several images with different resolutions. The proposed method can effectively improve the detection performance of large-scale craters and solve the migration problem when stitching together craters from large-scale images. This method recovered 85.48% of the craters with a radius greater than 10 km in an artificially annotated dataset, found 1044 new craters, and extended the maximum radius of detected craters from 72 km in randomly cropped image segmentation to 200 km. It was estimated by visual interpretation that approximately 82.09% of these new craters are real. Also, the recall reaches 90.17% when the new real craters are added to the true craters.
doi_str_mv 10.18494/SAM3564
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626960574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626960574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-c046385c6261041cd791e524f12b0487b2627b20d8018e2ebd15024661731dd63</originalsourceid><addsrcrecordid>eNotUE1Lw0AUXETBUAv-hAUvXqJvP5McY6laaFWo9Ro2u5uSkjR1dwP237vaXt57MDNvhkHolsADyXnBH9flignJL1BCORMp5LK4RAkUhKe8YOIaTb3fAQDJBUgqE_T1cXSqb43q8KJXW4vXdtvbfVChHfb4SXlrcDw26ZsNuBkcLscw9BHVeDV2ofVadRbPnArW4flPcEr_KW_QVaM6b6fnPUGb5_nn7DVdvr8sZuUy1UyIkGrgkuVCxygEONEmK4gVlDeE1sDzrKaSxgEmj4kttbUhAiiXkmSMGCPZBN2d_h7c8D1aH6rdMLp9tKyiVBYSRMYj6_7E0m7w3tmmOri2V-5YEaj-i6vOxbFfv0tdcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626960574</pqid></control><display><type>article</type><title>Pyramidal Image Segmentation Based on U-Net for Automatic Multiscale Crater Extraction</title><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Hong, Zhonghua ; Fan, Ziyang ; Zhou, Ruyan ; Pan, Haiyan ; Zhang, Yun ; Han, Yanling ; Wang, Jing ; Yang, Shuhu ; Jin, Yanmin</creator><creatorcontrib>Hong, Zhonghua ; Fan, Ziyang ; Zhou, Ruyan ; Pan, Haiyan ; Zhang, Yun ; Han, Yanling ; Wang, Jing ; Yang, Shuhu ; Jin, Yanmin</creatorcontrib><description>To extract craters with a radius greater than 10 km more effectively from lunar digital elevation maps, pyramidal image segmentation based on the U-Net model is proposed, and the conversion relationship between the multilayer image pyramid and the geographic coordinates of the crater is established. The crater image pyramid method ensures the full coverage of the study area with a small number of images and that each crater exists in several images with different resolutions. The proposed method can effectively improve the detection performance of large-scale craters and solve the migration problem when stitching together craters from large-scale images. This method recovered 85.48% of the craters with a radius greater than 10 km in an artificially annotated dataset, found 1044 new craters, and extended the maximum radius of detected craters from 72 km in randomly cropped image segmentation to 200 km. It was estimated by visual interpretation that approximately 82.09% of these new craters are real. Also, the recall reaches 90.17% when the new real craters are added to the true craters.</description><identifier>ISSN: 0914-4935</identifier><identifier>EISSN: 2435-0869</identifier><identifier>DOI: 10.18494/SAM3564</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Digital imaging ; Digital mapping ; Elevation ; Image segmentation ; Lunar craters ; Multilayers ; Stitching</subject><ispartof>Sensors and materials, 2022-01, Vol.34 (1), p.237</ispartof><rights>Copyright MYU Scientific Publishing Division 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-c046385c6261041cd791e524f12b0487b2627b20d8018e2ebd15024661731dd63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Hong, Zhonghua</creatorcontrib><creatorcontrib>Fan, Ziyang</creatorcontrib><creatorcontrib>Zhou, Ruyan</creatorcontrib><creatorcontrib>Pan, Haiyan</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Han, Yanling</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Yang, Shuhu</creatorcontrib><creatorcontrib>Jin, Yanmin</creatorcontrib><title>Pyramidal Image Segmentation Based on U-Net for Automatic Multiscale Crater Extraction</title><title>Sensors and materials</title><description>To extract craters with a radius greater than 10 km more effectively from lunar digital elevation maps, pyramidal image segmentation based on the U-Net model is proposed, and the conversion relationship between the multilayer image pyramid and the geographic coordinates of the crater is established. The crater image pyramid method ensures the full coverage of the study area with a small number of images and that each crater exists in several images with different resolutions. The proposed method can effectively improve the detection performance of large-scale craters and solve the migration problem when stitching together craters from large-scale images. This method recovered 85.48% of the craters with a radius greater than 10 km in an artificially annotated dataset, found 1044 new craters, and extended the maximum radius of detected craters from 72 km in randomly cropped image segmentation to 200 km. It was estimated by visual interpretation that approximately 82.09% of these new craters are real. Also, the recall reaches 90.17% when the new real craters are added to the true craters.</description><subject>Digital imaging</subject><subject>Digital mapping</subject><subject>Elevation</subject><subject>Image segmentation</subject><subject>Lunar craters</subject><subject>Multilayers</subject><subject>Stitching</subject><issn>0914-4935</issn><issn>2435-0869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotUE1Lw0AUXETBUAv-hAUvXqJvP5McY6laaFWo9Ro2u5uSkjR1dwP237vaXt57MDNvhkHolsADyXnBH9flignJL1BCORMp5LK4RAkUhKe8YOIaTb3fAQDJBUgqE_T1cXSqb43q8KJXW4vXdtvbfVChHfb4SXlrcDw26ZsNuBkcLscw9BHVeDV2ofVadRbPnArW4flPcEr_KW_QVaM6b6fnPUGb5_nn7DVdvr8sZuUy1UyIkGrgkuVCxygEONEmK4gVlDeE1sDzrKaSxgEmj4kttbUhAiiXkmSMGCPZBN2d_h7c8D1aH6rdMLp9tKyiVBYSRMYj6_7E0m7w3tmmOri2V-5YEaj-i6vOxbFfv0tdcA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Hong, Zhonghua</creator><creator>Fan, Ziyang</creator><creator>Zhou, Ruyan</creator><creator>Pan, Haiyan</creator><creator>Zhang, Yun</creator><creator>Han, Yanling</creator><creator>Wang, Jing</creator><creator>Yang, Shuhu</creator><creator>Jin, Yanmin</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>Pyramidal Image Segmentation Based on U-Net for Automatic Multiscale Crater Extraction</title><author>Hong, Zhonghua ; Fan, Ziyang ; Zhou, Ruyan ; Pan, Haiyan ; Zhang, Yun ; Han, Yanling ; Wang, Jing ; Yang, Shuhu ; Jin, Yanmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-c046385c6261041cd791e524f12b0487b2627b20d8018e2ebd15024661731dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Digital imaging</topic><topic>Digital mapping</topic><topic>Elevation</topic><topic>Image segmentation</topic><topic>Lunar craters</topic><topic>Multilayers</topic><topic>Stitching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Zhonghua</creatorcontrib><creatorcontrib>Fan, Ziyang</creatorcontrib><creatorcontrib>Zhou, Ruyan</creatorcontrib><creatorcontrib>Pan, Haiyan</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Han, Yanling</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Yang, Shuhu</creatorcontrib><creatorcontrib>Jin, Yanmin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Zhonghua</au><au>Fan, Ziyang</au><au>Zhou, Ruyan</au><au>Pan, Haiyan</au><au>Zhang, Yun</au><au>Han, Yanling</au><au>Wang, Jing</au><au>Yang, Shuhu</au><au>Jin, Yanmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyramidal Image Segmentation Based on U-Net for Automatic Multiscale Crater Extraction</atitle><jtitle>Sensors and materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><spage>237</spage><pages>237-</pages><issn>0914-4935</issn><eissn>2435-0869</eissn><abstract>To extract craters with a radius greater than 10 km more effectively from lunar digital elevation maps, pyramidal image segmentation based on the U-Net model is proposed, and the conversion relationship between the multilayer image pyramid and the geographic coordinates of the crater is established. The crater image pyramid method ensures the full coverage of the study area with a small number of images and that each crater exists in several images with different resolutions. The proposed method can effectively improve the detection performance of large-scale craters and solve the migration problem when stitching together craters from large-scale images. This method recovered 85.48% of the craters with a radius greater than 10 km in an artificially annotated dataset, found 1044 new craters, and extended the maximum radius of detected craters from 72 km in randomly cropped image segmentation to 200 km. It was estimated by visual interpretation that approximately 82.09% of these new craters are real. Also, the recall reaches 90.17% when the new real craters are added to the true craters.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM3564</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2022-01, Vol.34 (1), p.237
issn 0914-4935
2435-0869
language eng
recordid cdi_proquest_journals_2626960574
source DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Digital imaging
Digital mapping
Elevation
Image segmentation
Lunar craters
Multilayers
Stitching
title Pyramidal Image Segmentation Based on U-Net for Automatic Multiscale Crater Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyramidal%20Image%20Segmentation%20Based%20on%20U-Net%20for%20Automatic%20Multiscale%20Crater%20Extraction&rft.jtitle=Sensors%20and%20materials&rft.au=Hong,%20Zhonghua&rft.date=2022-01-01&rft.volume=34&rft.issue=1&rft.spage=237&rft.pages=237-&rft.issn=0914-4935&rft.eissn=2435-0869&rft_id=info:doi/10.18494/SAM3564&rft_dat=%3Cproquest_cross%3E2626960574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626960574&rft_id=info:pmid/&rfr_iscdi=true