Magnetic Field Effect on the Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubits

Under a strong electron-LO-phonon coupling in asymmetric Gaussian confinement potential quantum wells (AGCPQWs) when exposed to external magnetic fields, the AGCPQW qubit coherent time can be obtained from Fermi's golden rule and the variational method of Pekar type. We have calculated the cohe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2022, Vol.206 (3-4), p.191-198
Hauptverfasser: Feng, Li-Qin, Qiu, Wei, Ma, Xin-Jun, Sun, Yong, Xiao, Jing-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 3-4
container_start_page 191
container_title Journal of low temperature physics
container_volume 206
creator Feng, Li-Qin
Qiu, Wei
Ma, Xin-Jun
Sun, Yong
Xiao, Jing-Lin
description Under a strong electron-LO-phonon coupling in asymmetric Gaussian confinement potential quantum wells (AGCPQWs) when exposed to external magnetic fields, the AGCPQW qubit coherent time can be obtained from Fermi's golden rule and the variational method of Pekar type. We have calculated the coherence times of two-level quantum systems in RbCl AGCPQWs in external magnetic fields with varying with cyclotron frequency of magnetic field, confinement potential range (CPR), AGCPQW height, oscillating frequency and polaron radius were theoretically calculated. Based on the numerical results, we found that the coherence time was increased by decreasing magnetic field cyclotron frequency, AGCPQW height, oscillating frequency and polaron radius. Also, the coherence time was decreased with CPR for R < 0.7 nm and increased for R > 0.7 nm , with minimum value at R = 0.7 nm , ω c = 10 × 10 13 Hz and τ = 409.9 ps .
doi_str_mv 10.1007/s10909-021-02651-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626954958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626954958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-78d53b5ffa54a3ee09fb90b64189b17a1c7765a8e6d2e0c46d9ee3d90f7ccd663</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-mmRzLKV-QEUFxWPIZid1ZTdbk-zBf2-0gjcPw8vA88zAi9A5JZeUEHWVKNFEV4TRMlLQih2gGRWKV4oLdYhmhDBWMabpMTpJ6Z0QomvJZ6i_t9sAuXP4uoO-xWvvwWU8BpzfAK_GN4gQHODnbgA8erxMn8MAORbhxk4pdTYUKvguwAAh48cxl-hsj58mG_I04Ffov5emy-kUHXnbJzj7zTl6uV4_r26rzcPN3Wq5qRynOleqbgVvhPdWLCwHINo3mjRyQWvdUGWpU0oKW4NsGRC3kK0G4K0mXjnXSsnn6GJ_dxfHjwlSNu_jFEN5aZhkUouFFnWh2J5ycUwpgje72A02fhpKzHerZt-qKa2an1YNKxLfS6nAYQvx7_Q_1hfinHtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626954958</pqid></control><display><type>article</type><title>Magnetic Field Effect on the Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubits</title><source>SpringerLink Journals</source><creator>Feng, Li-Qin ; Qiu, Wei ; Ma, Xin-Jun ; Sun, Yong ; Xiao, Jing-Lin</creator><creatorcontrib>Feng, Li-Qin ; Qiu, Wei ; Ma, Xin-Jun ; Sun, Yong ; Xiao, Jing-Lin</creatorcontrib><description>Under a strong electron-LO-phonon coupling in asymmetric Gaussian confinement potential quantum wells (AGCPQWs) when exposed to external magnetic fields, the AGCPQW qubit coherent time can be obtained from Fermi's golden rule and the variational method of Pekar type. We have calculated the coherence times of two-level quantum systems in RbCl AGCPQWs in external magnetic fields with varying with cyclotron frequency of magnetic field, confinement potential range (CPR), AGCPQW height, oscillating frequency and polaron radius were theoretically calculated. Based on the numerical results, we found that the coherence time was increased by decreasing magnetic field cyclotron frequency, AGCPQW height, oscillating frequency and polaron radius. Also, the coherence time was decreased with CPR for R &lt; 0.7 nm and increased for R &gt; 0.7 nm , with minimum value at R = 0.7 nm , ω c = 10 × 10 13 Hz and τ = 409.9 ps .</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-021-02651-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Confinement ; Cyclotron frequency ; Cyclotrons ; Low temperature physics ; Magnetic fields ; Magnetic Materials ; Magnetism ; Mathematical analysis ; Physics ; Physics and Astronomy ; Polarons ; Quantum wells ; Qubits (quantum computing)</subject><ispartof>Journal of low temperature physics, 2022, Vol.206 (3-4), p.191-198</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-78d53b5ffa54a3ee09fb90b64189b17a1c7765a8e6d2e0c46d9ee3d90f7ccd663</citedby><cites>FETCH-LOGICAL-c319t-78d53b5ffa54a3ee09fb90b64189b17a1c7765a8e6d2e0c46d9ee3d90f7ccd663</cites><orcidid>0000-0002-1884-4709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-021-02651-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-021-02651-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Feng, Li-Qin</creatorcontrib><creatorcontrib>Qiu, Wei</creatorcontrib><creatorcontrib>Ma, Xin-Jun</creatorcontrib><creatorcontrib>Sun, Yong</creatorcontrib><creatorcontrib>Xiao, Jing-Lin</creatorcontrib><title>Magnetic Field Effect on the Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubits</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>Under a strong electron-LO-phonon coupling in asymmetric Gaussian confinement potential quantum wells (AGCPQWs) when exposed to external magnetic fields, the AGCPQW qubit coherent time can be obtained from Fermi's golden rule and the variational method of Pekar type. We have calculated the coherence times of two-level quantum systems in RbCl AGCPQWs in external magnetic fields with varying with cyclotron frequency of magnetic field, confinement potential range (CPR), AGCPQW height, oscillating frequency and polaron radius were theoretically calculated. Based on the numerical results, we found that the coherence time was increased by decreasing magnetic field cyclotron frequency, AGCPQW height, oscillating frequency and polaron radius. Also, the coherence time was decreased with CPR for R &lt; 0.7 nm and increased for R &gt; 0.7 nm , with minimum value at R = 0.7 nm , ω c = 10 × 10 13 Hz and τ = 409.9 ps .</description><subject>Asymmetry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Confinement</subject><subject>Cyclotron frequency</subject><subject>Cyclotrons</subject><subject>Low temperature physics</subject><subject>Magnetic fields</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarons</subject><subject>Quantum wells</subject><subject>Qubits (quantum computing)</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-mmRzLKV-QEUFxWPIZid1ZTdbk-zBf2-0gjcPw8vA88zAi9A5JZeUEHWVKNFEV4TRMlLQih2gGRWKV4oLdYhmhDBWMabpMTpJ6Z0QomvJZ6i_t9sAuXP4uoO-xWvvwWU8BpzfAK_GN4gQHODnbgA8erxMn8MAORbhxk4pdTYUKvguwAAh48cxl-hsj58mG_I04Ffov5emy-kUHXnbJzj7zTl6uV4_r26rzcPN3Wq5qRynOleqbgVvhPdWLCwHINo3mjRyQWvdUGWpU0oKW4NsGRC3kK0G4K0mXjnXSsnn6GJ_dxfHjwlSNu_jFEN5aZhkUouFFnWh2J5ycUwpgje72A02fhpKzHerZt-qKa2an1YNKxLfS6nAYQvx7_Q_1hfinHtI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Feng, Li-Qin</creator><creator>Qiu, Wei</creator><creator>Ma, Xin-Jun</creator><creator>Sun, Yong</creator><creator>Xiao, Jing-Lin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1884-4709</orcidid></search><sort><creationdate>2022</creationdate><title>Magnetic Field Effect on the Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubits</title><author>Feng, Li-Qin ; Qiu, Wei ; Ma, Xin-Jun ; Sun, Yong ; Xiao, Jing-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-78d53b5ffa54a3ee09fb90b64189b17a1c7765a8e6d2e0c46d9ee3d90f7ccd663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Confinement</topic><topic>Cyclotron frequency</topic><topic>Cyclotrons</topic><topic>Low temperature physics</topic><topic>Magnetic fields</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarons</topic><topic>Quantum wells</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Li-Qin</creatorcontrib><creatorcontrib>Qiu, Wei</creatorcontrib><creatorcontrib>Ma, Xin-Jun</creatorcontrib><creatorcontrib>Sun, Yong</creatorcontrib><creatorcontrib>Xiao, Jing-Lin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Li-Qin</au><au>Qiu, Wei</au><au>Ma, Xin-Jun</au><au>Sun, Yong</au><au>Xiao, Jing-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Field Effect on the Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubits</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2022</date><risdate>2022</risdate><volume>206</volume><issue>3-4</issue><spage>191</spage><epage>198</epage><pages>191-198</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>Under a strong electron-LO-phonon coupling in asymmetric Gaussian confinement potential quantum wells (AGCPQWs) when exposed to external magnetic fields, the AGCPQW qubit coherent time can be obtained from Fermi's golden rule and the variational method of Pekar type. We have calculated the coherence times of two-level quantum systems in RbCl AGCPQWs in external magnetic fields with varying with cyclotron frequency of magnetic field, confinement potential range (CPR), AGCPQW height, oscillating frequency and polaron radius were theoretically calculated. Based on the numerical results, we found that the coherence time was increased by decreasing magnetic field cyclotron frequency, AGCPQW height, oscillating frequency and polaron radius. Also, the coherence time was decreased with CPR for R &lt; 0.7 nm and increased for R &gt; 0.7 nm , with minimum value at R = 0.7 nm , ω c = 10 × 10 13 Hz and τ = 409.9 ps .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-021-02651-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1884-4709</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2022, Vol.206 (3-4), p.191-198
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2626954958
source SpringerLink Journals
subjects Asymmetry
Characterization and Evaluation of Materials
Condensed Matter Physics
Confinement
Cyclotron frequency
Cyclotrons
Low temperature physics
Magnetic fields
Magnetic Materials
Magnetism
Mathematical analysis
Physics
Physics and Astronomy
Polarons
Quantum wells
Qubits (quantum computing)
title Magnetic Field Effect on the Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Field%20Effect%20on%20the%20Coherence%20Time%20of%20Asymmetric%20Gaussian%20Confinement%20Potential%20Quantum%20Well%20Qubits&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Feng,%20Li-Qin&rft.date=2022&rft.volume=206&rft.issue=3-4&rft.spage=191&rft.epage=198&rft.pages=191-198&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-021-02651-2&rft_dat=%3Cproquest_cross%3E2626954958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626954958&rft_id=info:pmid/&rfr_iscdi=true