Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery

Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer international 2022-03, Vol.71 (3), p.310-316
Hauptverfasser: Ramachandran, Murugesan, Subadevi, Rengapillai, Rajkumar, Palanisamy, Muthupradeepa, Rajendran, Sivakumar, Marimuthu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 3
container_start_page 310
container_title Polymer international
container_volume 71
creator Ramachandran, Murugesan
Subadevi, Rengapillai
Rajkumar, Palanisamy
Muthupradeepa, Rajendran
Sivakumar, Marimuthu
description Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nanosize ceramic fillers and blending with the host polymer, which were carried out in this work. The effect of CeO2 on the P(S‐MMA)‐poly(vinylidene fluoride) (25:75 of 27 wt%)‐LiClO4 (8 wt%)‐ethylene carbonate:propylene carbonate (1:1 of 65 wt%) system prepared via a conventional solution casting technique. The as‐prepared polymer membranes were characterized using XRD, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, SEM and AC impedance analyses. The composite polymer blend gel electrolyte system exhibits high ionic conductivity (2.51 × 10−2 S cm−1) with 6 wt% CeO2 nanofiller at ambient temperature. The conductivity enhancement is due to the presence of a rise in the amorphous content; it is in well concurrence with the XRD results. The optimum electrolyte was used to design the LiFePO4/composite gel polymer electrolyte/Li cell couple in a 2032 type coin cell. It possesses a discharge capacity of 151 mA h g−1 at 0.1 C. © 2021 Society of Industrial Chemistry. Fabrication and characterization of CeO2 based gel P(S‐MMA) blend polymer electrolyte Poly(styrene‐co‐methylmethacrylate) (P(S‐MMA))‐poly(vinylidene fluoride) (PVdF)‐CeO2 (0, 3, 6, 9 and 12 wt%) were synthesized using the solution casting method. The ionic conductivity is 2.51 × 10−2 S cm−1 and the discharge capacity 151 mA hg‐1 for the 6 wt% CeO2 based electrolyte.
doi_str_mv 10.1002/pi.6331
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2626633858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626633858</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2191-a2f7bae06282047987b9d3c9a34bbb5df164dce88970728b19499f5aee01b4573</originalsourceid><addsrcrecordid>eNotkM1KAzEcxIMoWKv4CgEvimxNsl_JUYofhUI96Dkku_-lKelmTVIkNx_BZ_RJ3KVeZi6_mYFB6JqSBSWEPQxmUeU5PUEzSkSdEcqqUzQjohQZpyQ_Rxch7AghXAgxQ2nVd_YAfQPYdXgJG4ZVwK0JA_jgTItNj7WFvsWDs-k2xOShh9_vn8aNsoe4TXZS1fhkVYS7KQ4WmuhHPgLunMfWxK057MeAcWOdihF8ukRnnbIBrv59jj6en96Xr9l687JaPq6zgVFBM8W6WisgFeOMFLXgtRZt3giVF1rrsu1oVbQNcC5qUjOuqSiE6EoFQKguyjqfo5tj7-Dd5wFClDt38P04KVnFqvErXvKRuj9SX8ZCkoM3e-WTpEROp8rByOlU-baaLP8DMw9veQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626633858</pqid></control><display><type>article</type><title>Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery</title><source>Wiley Online Library All Journals</source><creator>Ramachandran, Murugesan ; Subadevi, Rengapillai ; Rajkumar, Palanisamy ; Muthupradeepa, Rajendran ; Sivakumar, Marimuthu</creator><creatorcontrib>Ramachandran, Murugesan ; Subadevi, Rengapillai ; Rajkumar, Palanisamy ; Muthupradeepa, Rajendran ; Sivakumar, Marimuthu</creatorcontrib><description>Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nanosize ceramic fillers and blending with the host polymer, which were carried out in this work. The effect of CeO2 on the P(S‐MMA)‐poly(vinylidene fluoride) (25:75 of 27 wt%)‐LiClO4 (8 wt%)‐ethylene carbonate:propylene carbonate (1:1 of 65 wt%) system prepared via a conventional solution casting technique. The as‐prepared polymer membranes were characterized using XRD, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, SEM and AC impedance analyses. The composite polymer blend gel electrolyte system exhibits high ionic conductivity (2.51 × 10−2 S cm−1) with 6 wt% CeO2 nanofiller at ambient temperature. The conductivity enhancement is due to the presence of a rise in the amorphous content; it is in well concurrence with the XRD results. The optimum electrolyte was used to design the LiFePO4/composite gel polymer electrolyte/Li cell couple in a 2032 type coin cell. It possesses a discharge capacity of 151 mA h g−1 at 0.1 C. © 2021 Society of Industrial Chemistry. Fabrication and characterization of CeO2 based gel P(S‐MMA) blend polymer electrolyte Poly(styrene‐co‐methylmethacrylate) (P(S‐MMA))‐poly(vinylidene fluoride) (PVdF)‐CeO2 (0, 3, 6, 9 and 12 wt%) were synthesized using the solution casting method. The ionic conductivity is 2.51 × 10−2 S cm−1 and the discharge capacity 151 mA hg‐1 for the 6 wt% CeO2 based electrolyte.</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.6331</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Ambient temperature ; blend polymer system ; Cerium oxides ; composite polymer electrolyte ; Differential thermal analysis ; Differential thermogravimetric analysis ; Dispersions ; Electrolytes ; Fourier analysis ; Fourier transforms ; Infrared analysis ; Infrared spectroscopy ; Ion currents ; Lithium ; Lithium-ion batteries ; poly(styrene‐co‐methylmethacrylate) ; Polymer blends ; Polymers ; Polystyrene resins ; Polyvinylidene fluorides ; Propylene ; solution casting method ; Styrene ; Styrenes ; Tactics ; Thermogravimetry ; Vinylidene fluoride</subject><ispartof>Polymer international, 2022-03, Vol.71 (3), p.310-316</ispartof><rights>2021 Society of Industrial Chemistry.</rights><rights>Copyright © 2022 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpi.6331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpi.6331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Ramachandran, Murugesan</creatorcontrib><creatorcontrib>Subadevi, Rengapillai</creatorcontrib><creatorcontrib>Rajkumar, Palanisamy</creatorcontrib><creatorcontrib>Muthupradeepa, Rajendran</creatorcontrib><creatorcontrib>Sivakumar, Marimuthu</creatorcontrib><title>Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery</title><title>Polymer international</title><description>Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nanosize ceramic fillers and blending with the host polymer, which were carried out in this work. The effect of CeO2 on the P(S‐MMA)‐poly(vinylidene fluoride) (25:75 of 27 wt%)‐LiClO4 (8 wt%)‐ethylene carbonate:propylene carbonate (1:1 of 65 wt%) system prepared via a conventional solution casting technique. The as‐prepared polymer membranes were characterized using XRD, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, SEM and AC impedance analyses. The composite polymer blend gel electrolyte system exhibits high ionic conductivity (2.51 × 10−2 S cm−1) with 6 wt% CeO2 nanofiller at ambient temperature. The conductivity enhancement is due to the presence of a rise in the amorphous content; it is in well concurrence with the XRD results. The optimum electrolyte was used to design the LiFePO4/composite gel polymer electrolyte/Li cell couple in a 2032 type coin cell. It possesses a discharge capacity of 151 mA h g−1 at 0.1 C. © 2021 Society of Industrial Chemistry. Fabrication and characterization of CeO2 based gel P(S‐MMA) blend polymer electrolyte Poly(styrene‐co‐methylmethacrylate) (P(S‐MMA))‐poly(vinylidene fluoride) (PVdF)‐CeO2 (0, 3, 6, 9 and 12 wt%) were synthesized using the solution casting method. The ionic conductivity is 2.51 × 10−2 S cm−1 and the discharge capacity 151 mA hg‐1 for the 6 wt% CeO2 based electrolyte.</description><subject>Ambient temperature</subject><subject>blend polymer system</subject><subject>Cerium oxides</subject><subject>composite polymer electrolyte</subject><subject>Differential thermal analysis</subject><subject>Differential thermogravimetric analysis</subject><subject>Dispersions</subject><subject>Electrolytes</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>poly(styrene‐co‐methylmethacrylate)</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Polyvinylidene fluorides</subject><subject>Propylene</subject><subject>solution casting method</subject><subject>Styrene</subject><subject>Styrenes</subject><subject>Tactics</subject><subject>Thermogravimetry</subject><subject>Vinylidene fluoride</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEcxIMoWKv4CgEvimxNsl_JUYofhUI96Dkku_-lKelmTVIkNx_BZ_RJ3KVeZi6_mYFB6JqSBSWEPQxmUeU5PUEzSkSdEcqqUzQjohQZpyQ_Rxch7AghXAgxQ2nVd_YAfQPYdXgJG4ZVwK0JA_jgTItNj7WFvsWDs-k2xOShh9_vn8aNsoe4TXZS1fhkVYS7KQ4WmuhHPgLunMfWxK057MeAcWOdihF8ukRnnbIBrv59jj6en96Xr9l687JaPq6zgVFBM8W6WisgFeOMFLXgtRZt3giVF1rrsu1oVbQNcC5qUjOuqSiE6EoFQKguyjqfo5tj7-Dd5wFClDt38P04KVnFqvErXvKRuj9SX8ZCkoM3e-WTpEROp8rByOlU-baaLP8DMw9veQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Ramachandran, Murugesan</creator><creator>Subadevi, Rengapillai</creator><creator>Rajkumar, Palanisamy</creator><creator>Muthupradeepa, Rajendran</creator><creator>Sivakumar, Marimuthu</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202203</creationdate><title>Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery</title><author>Ramachandran, Murugesan ; Subadevi, Rengapillai ; Rajkumar, Palanisamy ; Muthupradeepa, Rajendran ; Sivakumar, Marimuthu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2191-a2f7bae06282047987b9d3c9a34bbb5df164dce88970728b19499f5aee01b4573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient temperature</topic><topic>blend polymer system</topic><topic>Cerium oxides</topic><topic>composite polymer electrolyte</topic><topic>Differential thermal analysis</topic><topic>Differential thermogravimetric analysis</topic><topic>Dispersions</topic><topic>Electrolytes</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>poly(styrene‐co‐methylmethacrylate)</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Polyvinylidene fluorides</topic><topic>Propylene</topic><topic>solution casting method</topic><topic>Styrene</topic><topic>Styrenes</topic><topic>Tactics</topic><topic>Thermogravimetry</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramachandran, Murugesan</creatorcontrib><creatorcontrib>Subadevi, Rengapillai</creatorcontrib><creatorcontrib>Rajkumar, Palanisamy</creatorcontrib><creatorcontrib>Muthupradeepa, Rajendran</creatorcontrib><creatorcontrib>Sivakumar, Marimuthu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramachandran, Murugesan</au><au>Subadevi, Rengapillai</au><au>Rajkumar, Palanisamy</au><au>Muthupradeepa, Rajendran</au><au>Sivakumar, Marimuthu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery</atitle><jtitle>Polymer international</jtitle><date>2022-03</date><risdate>2022</risdate><volume>71</volume><issue>3</issue><spage>310</spage><epage>316</epage><pages>310-316</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><abstract>Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nanosize ceramic fillers and blending with the host polymer, which were carried out in this work. The effect of CeO2 on the P(S‐MMA)‐poly(vinylidene fluoride) (25:75 of 27 wt%)‐LiClO4 (8 wt%)‐ethylene carbonate:propylene carbonate (1:1 of 65 wt%) system prepared via a conventional solution casting technique. The as‐prepared polymer membranes were characterized using XRD, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, SEM and AC impedance analyses. The composite polymer blend gel electrolyte system exhibits high ionic conductivity (2.51 × 10−2 S cm−1) with 6 wt% CeO2 nanofiller at ambient temperature. The conductivity enhancement is due to the presence of a rise in the amorphous content; it is in well concurrence with the XRD results. The optimum electrolyte was used to design the LiFePO4/composite gel polymer electrolyte/Li cell couple in a 2032 type coin cell. It possesses a discharge capacity of 151 mA h g−1 at 0.1 C. © 2021 Society of Industrial Chemistry. Fabrication and characterization of CeO2 based gel P(S‐MMA) blend polymer electrolyte Poly(styrene‐co‐methylmethacrylate) (P(S‐MMA))‐poly(vinylidene fluoride) (PVdF)‐CeO2 (0, 3, 6, 9 and 12 wt%) were synthesized using the solution casting method. The ionic conductivity is 2.51 × 10−2 S cm−1 and the discharge capacity 151 mA hg‐1 for the 6 wt% CeO2 based electrolyte.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pi.6331</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-8103
ispartof Polymer international, 2022-03, Vol.71 (3), p.310-316
issn 0959-8103
1097-0126
language eng
recordid cdi_proquest_journals_2626633858
source Wiley Online Library All Journals
subjects Ambient temperature
blend polymer system
Cerium oxides
composite polymer electrolyte
Differential thermal analysis
Differential thermogravimetric analysis
Dispersions
Electrolytes
Fourier analysis
Fourier transforms
Infrared analysis
Infrared spectroscopy
Ion currents
Lithium
Lithium-ion batteries
poly(styrene‐co‐methylmethacrylate)
Polymer blends
Polymers
Polystyrene resins
Polyvinylidene fluorides
Propylene
solution casting method
Styrene
Styrenes
Tactics
Thermogravimetry
Vinylidene fluoride
title Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20CeO2%20as%20dispersoid%20in%20blend%20poly(styrene%E2%80%90co%E2%80%90methylmethacrylate)%20as%20electrolyte%20for%20lithium%E2%80%90ion%20battery&rft.jtitle=Polymer%20international&rft.au=Ramachandran,%20Murugesan&rft.date=2022-03&rft.volume=71&rft.issue=3&rft.spage=310&rft.epage=316&rft.pages=310-316&rft.issn=0959-8103&rft.eissn=1097-0126&rft_id=info:doi/10.1002/pi.6331&rft_dat=%3Cproquest_wiley%3E2626633858%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626633858&rft_id=info:pmid/&rfr_iscdi=true