Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery
Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nano...
Gespeichert in:
Veröffentlicht in: | Polymer international 2022-03, Vol.71 (3), p.310-316 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 3 |
container_start_page | 310 |
container_title | Polymer international |
container_volume | 71 |
creator | Ramachandran, Murugesan Subadevi, Rengapillai Rajkumar, Palanisamy Muthupradeepa, Rajendran Sivakumar, Marimuthu |
description | Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nanosize ceramic fillers and blending with the host polymer, which were carried out in this work. The effect of CeO2 on the P(S‐MMA)‐poly(vinylidene fluoride) (25:75 of 27 wt%)‐LiClO4 (8 wt%)‐ethylene carbonate:propylene carbonate (1:1 of 65 wt%) system prepared via a conventional solution casting technique. The as‐prepared polymer membranes were characterized using XRD, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, SEM and AC impedance analyses. The composite polymer blend gel electrolyte system exhibits high ionic conductivity (2.51 × 10−2 S cm−1) with 6 wt% CeO2 nanofiller at ambient temperature. The conductivity enhancement is due to the presence of a rise in the amorphous content; it is in well concurrence with the XRD results. The optimum electrolyte was used to design the LiFePO4/composite gel polymer electrolyte/Li cell couple in a 2032 type coin cell. It possesses a discharge capacity of 151 mA h g−1 at 0.1 C. © 2021 Society of Industrial Chemistry.
Fabrication and characterization of CeO2 based gel P(S‐MMA) blend polymer electrolyte
Poly(styrene‐co‐methylmethacrylate) (P(S‐MMA))‐poly(vinylidene fluoride) (PVdF)‐CeO2 (0, 3, 6, 9 and 12 wt%) were synthesized using the solution casting method.
The ionic conductivity is 2.51 × 10−2 S cm−1 and the discharge capacity 151 mA hg‐1 for the 6 wt% CeO2 based electrolyte. |
doi_str_mv | 10.1002/pi.6331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2626633858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626633858</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2191-a2f7bae06282047987b9d3c9a34bbb5df164dce88970728b19499f5aee01b4573</originalsourceid><addsrcrecordid>eNotkM1KAzEcxIMoWKv4CgEvimxNsl_JUYofhUI96Dkku_-lKelmTVIkNx_BZ_RJ3KVeZi6_mYFB6JqSBSWEPQxmUeU5PUEzSkSdEcqqUzQjohQZpyQ_Rxch7AghXAgxQ2nVd_YAfQPYdXgJG4ZVwK0JA_jgTItNj7WFvsWDs-k2xOShh9_vn8aNsoe4TXZS1fhkVYS7KQ4WmuhHPgLunMfWxK057MeAcWOdihF8ukRnnbIBrv59jj6en96Xr9l687JaPq6zgVFBM8W6WisgFeOMFLXgtRZt3giVF1rrsu1oVbQNcC5qUjOuqSiE6EoFQKguyjqfo5tj7-Dd5wFClDt38P04KVnFqvErXvKRuj9SX8ZCkoM3e-WTpEROp8rByOlU-baaLP8DMw9veQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626633858</pqid></control><display><type>article</type><title>Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery</title><source>Wiley Online Library All Journals</source><creator>Ramachandran, Murugesan ; Subadevi, Rengapillai ; Rajkumar, Palanisamy ; Muthupradeepa, Rajendran ; Sivakumar, Marimuthu</creator><creatorcontrib>Ramachandran, Murugesan ; Subadevi, Rengapillai ; Rajkumar, Palanisamy ; Muthupradeepa, Rajendran ; Sivakumar, Marimuthu</creatorcontrib><description>Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nanosize ceramic fillers and blending with the host polymer, which were carried out in this work. The effect of CeO2 on the P(S‐MMA)‐poly(vinylidene fluoride) (25:75 of 27 wt%)‐LiClO4 (8 wt%)‐ethylene carbonate:propylene carbonate (1:1 of 65 wt%) system prepared via a conventional solution casting technique. The as‐prepared polymer membranes were characterized using XRD, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, SEM and AC impedance analyses. The composite polymer blend gel electrolyte system exhibits high ionic conductivity (2.51 × 10−2 S cm−1) with 6 wt% CeO2 nanofiller at ambient temperature. The conductivity enhancement is due to the presence of a rise in the amorphous content; it is in well concurrence with the XRD results. The optimum electrolyte was used to design the LiFePO4/composite gel polymer electrolyte/Li cell couple in a 2032 type coin cell. It possesses a discharge capacity of 151 mA h g−1 at 0.1 C. © 2021 Society of Industrial Chemistry.
Fabrication and characterization of CeO2 based gel P(S‐MMA) blend polymer electrolyte
Poly(styrene‐co‐methylmethacrylate) (P(S‐MMA))‐poly(vinylidene fluoride) (PVdF)‐CeO2 (0, 3, 6, 9 and 12 wt%) were synthesized using the solution casting method.
The ionic conductivity is 2.51 × 10−2 S cm−1 and the discharge capacity 151 mA hg‐1 for the 6 wt% CeO2 based electrolyte.</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.6331</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Ambient temperature ; blend polymer system ; Cerium oxides ; composite polymer electrolyte ; Differential thermal analysis ; Differential thermogravimetric analysis ; Dispersions ; Electrolytes ; Fourier analysis ; Fourier transforms ; Infrared analysis ; Infrared spectroscopy ; Ion currents ; Lithium ; Lithium-ion batteries ; poly(styrene‐co‐methylmethacrylate) ; Polymer blends ; Polymers ; Polystyrene resins ; Polyvinylidene fluorides ; Propylene ; solution casting method ; Styrene ; Styrenes ; Tactics ; Thermogravimetry ; Vinylidene fluoride</subject><ispartof>Polymer international, 2022-03, Vol.71 (3), p.310-316</ispartof><rights>2021 Society of Industrial Chemistry.</rights><rights>Copyright © 2022 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpi.6331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpi.6331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Ramachandran, Murugesan</creatorcontrib><creatorcontrib>Subadevi, Rengapillai</creatorcontrib><creatorcontrib>Rajkumar, Palanisamy</creatorcontrib><creatorcontrib>Muthupradeepa, Rajendran</creatorcontrib><creatorcontrib>Sivakumar, Marimuthu</creatorcontrib><title>Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery</title><title>Polymer international</title><description>Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nanosize ceramic fillers and blending with the host polymer, which were carried out in this work. The effect of CeO2 on the P(S‐MMA)‐poly(vinylidene fluoride) (25:75 of 27 wt%)‐LiClO4 (8 wt%)‐ethylene carbonate:propylene carbonate (1:1 of 65 wt%) system prepared via a conventional solution casting technique. The as‐prepared polymer membranes were characterized using XRD, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, SEM and AC impedance analyses. The composite polymer blend gel electrolyte system exhibits high ionic conductivity (2.51 × 10−2 S cm−1) with 6 wt% CeO2 nanofiller at ambient temperature. The conductivity enhancement is due to the presence of a rise in the amorphous content; it is in well concurrence with the XRD results. The optimum electrolyte was used to design the LiFePO4/composite gel polymer electrolyte/Li cell couple in a 2032 type coin cell. It possesses a discharge capacity of 151 mA h g−1 at 0.1 C. © 2021 Society of Industrial Chemistry.
Fabrication and characterization of CeO2 based gel P(S‐MMA) blend polymer electrolyte
Poly(styrene‐co‐methylmethacrylate) (P(S‐MMA))‐poly(vinylidene fluoride) (PVdF)‐CeO2 (0, 3, 6, 9 and 12 wt%) were synthesized using the solution casting method.
The ionic conductivity is 2.51 × 10−2 S cm−1 and the discharge capacity 151 mA hg‐1 for the 6 wt% CeO2 based electrolyte.</description><subject>Ambient temperature</subject><subject>blend polymer system</subject><subject>Cerium oxides</subject><subject>composite polymer electrolyte</subject><subject>Differential thermal analysis</subject><subject>Differential thermogravimetric analysis</subject><subject>Dispersions</subject><subject>Electrolytes</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>poly(styrene‐co‐methylmethacrylate)</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Polyvinylidene fluorides</subject><subject>Propylene</subject><subject>solution casting method</subject><subject>Styrene</subject><subject>Styrenes</subject><subject>Tactics</subject><subject>Thermogravimetry</subject><subject>Vinylidene fluoride</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEcxIMoWKv4CgEvimxNsl_JUYofhUI96Dkku_-lKelmTVIkNx_BZ_RJ3KVeZi6_mYFB6JqSBSWEPQxmUeU5PUEzSkSdEcqqUzQjohQZpyQ_Rxch7AghXAgxQ2nVd_YAfQPYdXgJG4ZVwK0JA_jgTItNj7WFvsWDs-k2xOShh9_vn8aNsoe4TXZS1fhkVYS7KQ4WmuhHPgLunMfWxK057MeAcWOdihF8ukRnnbIBrv59jj6en96Xr9l687JaPq6zgVFBM8W6WisgFeOMFLXgtRZt3giVF1rrsu1oVbQNcC5qUjOuqSiE6EoFQKguyjqfo5tj7-Dd5wFClDt38P04KVnFqvErXvKRuj9SX8ZCkoM3e-WTpEROp8rByOlU-baaLP8DMw9veQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Ramachandran, Murugesan</creator><creator>Subadevi, Rengapillai</creator><creator>Rajkumar, Palanisamy</creator><creator>Muthupradeepa, Rajendran</creator><creator>Sivakumar, Marimuthu</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202203</creationdate><title>Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery</title><author>Ramachandran, Murugesan ; Subadevi, Rengapillai ; Rajkumar, Palanisamy ; Muthupradeepa, Rajendran ; Sivakumar, Marimuthu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2191-a2f7bae06282047987b9d3c9a34bbb5df164dce88970728b19499f5aee01b4573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient temperature</topic><topic>blend polymer system</topic><topic>Cerium oxides</topic><topic>composite polymer electrolyte</topic><topic>Differential thermal analysis</topic><topic>Differential thermogravimetric analysis</topic><topic>Dispersions</topic><topic>Electrolytes</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>poly(styrene‐co‐methylmethacrylate)</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Polyvinylidene fluorides</topic><topic>Propylene</topic><topic>solution casting method</topic><topic>Styrene</topic><topic>Styrenes</topic><topic>Tactics</topic><topic>Thermogravimetry</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramachandran, Murugesan</creatorcontrib><creatorcontrib>Subadevi, Rengapillai</creatorcontrib><creatorcontrib>Rajkumar, Palanisamy</creatorcontrib><creatorcontrib>Muthupradeepa, Rajendran</creatorcontrib><creatorcontrib>Sivakumar, Marimuthu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramachandran, Murugesan</au><au>Subadevi, Rengapillai</au><au>Rajkumar, Palanisamy</au><au>Muthupradeepa, Rajendran</au><au>Sivakumar, Marimuthu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery</atitle><jtitle>Polymer international</jtitle><date>2022-03</date><risdate>2022</risdate><volume>71</volume><issue>3</issue><spage>310</spage><epage>316</epage><pages>310-316</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><abstract>Poly(styrene‐co‐methylmethacrylate) P(S‐MMA) composite polymer electrolytes are having massive consideration for solid‐state electrochemical devices. There are numerous tactics implement to improve the ambient temperature ionic conductivity such as the addition of plasticizers, the inclusion of nanosize ceramic fillers and blending with the host polymer, which were carried out in this work. The effect of CeO2 on the P(S‐MMA)‐poly(vinylidene fluoride) (25:75 of 27 wt%)‐LiClO4 (8 wt%)‐ethylene carbonate:propylene carbonate (1:1 of 65 wt%) system prepared via a conventional solution casting technique. The as‐prepared polymer membranes were characterized using XRD, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, SEM and AC impedance analyses. The composite polymer blend gel electrolyte system exhibits high ionic conductivity (2.51 × 10−2 S cm−1) with 6 wt% CeO2 nanofiller at ambient temperature. The conductivity enhancement is due to the presence of a rise in the amorphous content; it is in well concurrence with the XRD results. The optimum electrolyte was used to design the LiFePO4/composite gel polymer electrolyte/Li cell couple in a 2032 type coin cell. It possesses a discharge capacity of 151 mA h g−1 at 0.1 C. © 2021 Society of Industrial Chemistry.
Fabrication and characterization of CeO2 based gel P(S‐MMA) blend polymer electrolyte
Poly(styrene‐co‐methylmethacrylate) (P(S‐MMA))‐poly(vinylidene fluoride) (PVdF)‐CeO2 (0, 3, 6, 9 and 12 wt%) were synthesized using the solution casting method.
The ionic conductivity is 2.51 × 10−2 S cm−1 and the discharge capacity 151 mA hg‐1 for the 6 wt% CeO2 based electrolyte.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/pi.6331</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-8103 |
ispartof | Polymer international, 2022-03, Vol.71 (3), p.310-316 |
issn | 0959-8103 1097-0126 |
language | eng |
recordid | cdi_proquest_journals_2626633858 |
source | Wiley Online Library All Journals |
subjects | Ambient temperature blend polymer system Cerium oxides composite polymer electrolyte Differential thermal analysis Differential thermogravimetric analysis Dispersions Electrolytes Fourier analysis Fourier transforms Infrared analysis Infrared spectroscopy Ion currents Lithium Lithium-ion batteries poly(styrene‐co‐methylmethacrylate) Polymer blends Polymers Polystyrene resins Polyvinylidene fluorides Propylene solution casting method Styrene Styrenes Tactics Thermogravimetry Vinylidene fluoride |
title | Influence of CeO2 as dispersoid in blend poly(styrene‐co‐methylmethacrylate) as electrolyte for lithium‐ion battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20CeO2%20as%20dispersoid%20in%20blend%20poly(styrene%E2%80%90co%E2%80%90methylmethacrylate)%20as%20electrolyte%20for%20lithium%E2%80%90ion%20battery&rft.jtitle=Polymer%20international&rft.au=Ramachandran,%20Murugesan&rft.date=2022-03&rft.volume=71&rft.issue=3&rft.spage=310&rft.epage=316&rft.pages=310-316&rft.issn=0959-8103&rft.eissn=1097-0126&rft_id=info:doi/10.1002/pi.6331&rft_dat=%3Cproquest_wiley%3E2626633858%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626633858&rft_id=info:pmid/&rfr_iscdi=true |