An effective analytical method for buckling solutions of a restrained FGM nonlocal beam
This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of res...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2022-03, Vol.41 (2), Article 67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 41 |
creator | Civalek, Ömer Uzun, Büşra Yaylı, Mustafa Özgür |
description | This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of restrained functionally graded nanobeam. In addition, buckling loads of functionally graded nanobeam are obtained by classical elasticity theory as well to highlight the size effects. The influences of various parameters such as the nonlocal parameter, rotational restraints and power-law index on the critical buckling load of the functionally graded nonlocal beam are investigated. The contribution of this paper is that it presents an efficient analytical solution for the buckling response of functionally graded nanobeam with non-rigid boundary conditions. |
doi_str_mv | 10.1007/s40314-022-01761-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626286472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626286472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-97d7ad9b83fd7b5e7a12f9432414de73c0ccf66cb137401808c3127d25312d453</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTm0cnMshRbhYobxWXI5FGnTic1mRH6700dwZ3cxdmc73DPQeiawi0FkHdJAKeCAGMEqCwooSdoQkuQBDiwUzRhjJeEF8DP0UVKWwAuqRAT9DbvsPPemb75clh3uj30jdEt3rn-PVjsQ8T1YD7aptvgFNqhb0KXcPBY4-hSH3XTOYuXqyfcha4NR7R2eneJzrxuk7v61Sl6Xd6_LB7I-nn1uJivieG06kklrdS2qkvuraxnTmrKfCU4E1RYJ7kBY3xRmJpyKSAXKjPHpGWzLFbM-BTdjLn7GD6H_JDahiHmGkmxIl9ZCMmyi40uE0NK0Xm1j81Ox4OioI4DqnFAlQdUPwMqmiE-Qimbu42Lf9H_UN_0bXJj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626286472</pqid></control><display><type>article</type><title>An effective analytical method for buckling solutions of a restrained FGM nonlocal beam</title><source>SpringerLink Journals</source><creator>Civalek, Ömer ; Uzun, Büşra ; Yaylı, Mustafa Özgür</creator><creatorcontrib>Civalek, Ömer ; Uzun, Büşra ; Yaylı, Mustafa Özgür</creatorcontrib><description>This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of restrained functionally graded nanobeam. In addition, buckling loads of functionally graded nanobeam are obtained by classical elasticity theory as well to highlight the size effects. The influences of various parameters such as the nonlocal parameter, rotational restraints and power-law index on the critical buckling load of the functionally graded nonlocal beam are investigated. The contribution of this paper is that it presents an efficient analytical solution for the buckling response of functionally graded nanobeam with non-rigid boundary conditions.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-01761-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Beam theory (structures) ; Boundary conditions ; Buckling ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Euler-Bernoulli beams ; Exact solutions ; Fourier series ; Functionally gradient materials ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Nonlocal elasticity ; Parameters ; Size effects ; Stability analysis</subject><ispartof>Computational & applied mathematics, 2022-03, Vol.41 (2), Article 67</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022</rights><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-97d7ad9b83fd7b5e7a12f9432414de73c0ccf66cb137401808c3127d25312d453</citedby><cites>FETCH-LOGICAL-c319t-97d7ad9b83fd7b5e7a12f9432414de73c0ccf66cb137401808c3127d25312d453</cites><orcidid>0000-0003-2231-170X ; 0000-0003-1907-9479 ; 0000-0002-7636-7170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-01761-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-01761-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Civalek, Ömer</creatorcontrib><creatorcontrib>Uzun, Büşra</creatorcontrib><creatorcontrib>Yaylı, Mustafa Özgür</creatorcontrib><title>An effective analytical method for buckling solutions of a restrained FGM nonlocal beam</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of restrained functionally graded nanobeam. In addition, buckling loads of functionally graded nanobeam are obtained by classical elasticity theory as well to highlight the size effects. The influences of various parameters such as the nonlocal parameter, rotational restraints and power-law index on the critical buckling load of the functionally graded nonlocal beam are investigated. The contribution of this paper is that it presents an efficient analytical solution for the buckling response of functionally graded nanobeam with non-rigid boundary conditions.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Beam theory (structures)</subject><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Euler-Bernoulli beams</subject><subject>Exact solutions</subject><subject>Fourier series</subject><subject>Functionally gradient materials</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlocal elasticity</subject><subject>Parameters</subject><subject>Size effects</subject><subject>Stability analysis</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTm0cnMshRbhYobxWXI5FGnTic1mRH6700dwZ3cxdmc73DPQeiawi0FkHdJAKeCAGMEqCwooSdoQkuQBDiwUzRhjJeEF8DP0UVKWwAuqRAT9DbvsPPemb75clh3uj30jdEt3rn-PVjsQ8T1YD7aptvgFNqhb0KXcPBY4-hSH3XTOYuXqyfcha4NR7R2eneJzrxuk7v61Sl6Xd6_LB7I-nn1uJivieG06kklrdS2qkvuraxnTmrKfCU4E1RYJ7kBY3xRmJpyKSAXKjPHpGWzLFbM-BTdjLn7GD6H_JDahiHmGkmxIl9ZCMmyi40uE0NK0Xm1j81Ox4OioI4DqnFAlQdUPwMqmiE-Qimbu42Lf9H_UN_0bXJj</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Civalek, Ömer</creator><creator>Uzun, Büşra</creator><creator>Yaylı, Mustafa Özgür</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2231-170X</orcidid><orcidid>https://orcid.org/0000-0003-1907-9479</orcidid><orcidid>https://orcid.org/0000-0002-7636-7170</orcidid></search><sort><creationdate>20220301</creationdate><title>An effective analytical method for buckling solutions of a restrained FGM nonlocal beam</title><author>Civalek, Ömer ; Uzun, Büşra ; Yaylı, Mustafa Özgür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-97d7ad9b83fd7b5e7a12f9432414de73c0ccf66cb137401808c3127d25312d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Beam theory (structures)</topic><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Euler-Bernoulli beams</topic><topic>Exact solutions</topic><topic>Fourier series</topic><topic>Functionally gradient materials</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlocal elasticity</topic><topic>Parameters</topic><topic>Size effects</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Civalek, Ömer</creatorcontrib><creatorcontrib>Uzun, Büşra</creatorcontrib><creatorcontrib>Yaylı, Mustafa Özgür</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Civalek, Ömer</au><au>Uzun, Büşra</au><au>Yaylı, Mustafa Özgür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective analytical method for buckling solutions of a restrained FGM nonlocal beam</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>41</volume><issue>2</issue><artnum>67</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of restrained functionally graded nanobeam. In addition, buckling loads of functionally graded nanobeam are obtained by classical elasticity theory as well to highlight the size effects. The influences of various parameters such as the nonlocal parameter, rotational restraints and power-law index on the critical buckling load of the functionally graded nonlocal beam are investigated. The contribution of this paper is that it presents an efficient analytical solution for the buckling response of functionally graded nanobeam with non-rigid boundary conditions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-01761-1</doi><orcidid>https://orcid.org/0000-0003-2231-170X</orcidid><orcidid>https://orcid.org/0000-0003-1907-9479</orcidid><orcidid>https://orcid.org/0000-0002-7636-7170</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2022-03, Vol.41 (2), Article 67 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2626286472 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Applied physics Beam theory (structures) Boundary conditions Buckling Computational mathematics Computational Mathematics and Numerical Analysis Euler-Bernoulli beams Exact solutions Fourier series Functionally gradient materials Mathematical analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Nonlocal elasticity Parameters Size effects Stability analysis |
title | An effective analytical method for buckling solutions of a restrained FGM nonlocal beam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20analytical%20method%20for%20buckling%20solutions%20of%20a%20restrained%20FGM%20nonlocal%20beam&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Civalek,%20%C3%96mer&rft.date=2022-03-01&rft.volume=41&rft.issue=2&rft.artnum=67&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-01761-1&rft_dat=%3Cproquest_cross%3E2626286472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626286472&rft_id=info:pmid/&rfr_iscdi=true |