An effective analytical method for buckling solutions of a restrained FGM nonlocal beam

This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2022-03, Vol.41 (2), Article 67
Hauptverfasser: Civalek, Ömer, Uzun, Büşra, Yaylı, Mustafa Özgür
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Computational & applied mathematics
container_volume 41
creator Civalek, Ömer
Uzun, Büşra
Yaylı, Mustafa Özgür
description This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of restrained functionally graded nanobeam. In addition, buckling loads of functionally graded nanobeam are obtained by classical elasticity theory as well to highlight the size effects. The influences of various parameters such as the nonlocal parameter, rotational restraints and power-law index on the critical buckling load of the functionally graded nonlocal beam are investigated. The contribution of this paper is that it presents an efficient analytical solution for the buckling response of functionally graded nanobeam with non-rigid boundary conditions.
doi_str_mv 10.1007/s40314-022-01761-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626286472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626286472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-97d7ad9b83fd7b5e7a12f9432414de73c0ccf66cb137401808c3127d25312d453</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTm0cnMshRbhYobxWXI5FGnTic1mRH6700dwZ3cxdmc73DPQeiawi0FkHdJAKeCAGMEqCwooSdoQkuQBDiwUzRhjJeEF8DP0UVKWwAuqRAT9DbvsPPemb75clh3uj30jdEt3rn-PVjsQ8T1YD7aptvgFNqhb0KXcPBY4-hSH3XTOYuXqyfcha4NR7R2eneJzrxuk7v61Sl6Xd6_LB7I-nn1uJivieG06kklrdS2qkvuraxnTmrKfCU4E1RYJ7kBY3xRmJpyKSAXKjPHpGWzLFbM-BTdjLn7GD6H_JDahiHmGkmxIl9ZCMmyi40uE0NK0Xm1j81Ox4OioI4DqnFAlQdUPwMqmiE-Qimbu42Lf9H_UN_0bXJj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626286472</pqid></control><display><type>article</type><title>An effective analytical method for buckling solutions of a restrained FGM nonlocal beam</title><source>SpringerLink Journals</source><creator>Civalek, Ömer ; Uzun, Büşra ; Yaylı, Mustafa Özgür</creator><creatorcontrib>Civalek, Ömer ; Uzun, Büşra ; Yaylı, Mustafa Özgür</creatorcontrib><description>This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of restrained functionally graded nanobeam. In addition, buckling loads of functionally graded nanobeam are obtained by classical elasticity theory as well to highlight the size effects. The influences of various parameters such as the nonlocal parameter, rotational restraints and power-law index on the critical buckling load of the functionally graded nonlocal beam are investigated. The contribution of this paper is that it presents an efficient analytical solution for the buckling response of functionally graded nanobeam with non-rigid boundary conditions.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-01761-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Beam theory (structures) ; Boundary conditions ; Buckling ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Euler-Bernoulli beams ; Exact solutions ; Fourier series ; Functionally gradient materials ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Nonlocal elasticity ; Parameters ; Size effects ; Stability analysis</subject><ispartof>Computational &amp; applied mathematics, 2022-03, Vol.41 (2), Article 67</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022</rights><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-97d7ad9b83fd7b5e7a12f9432414de73c0ccf66cb137401808c3127d25312d453</citedby><cites>FETCH-LOGICAL-c319t-97d7ad9b83fd7b5e7a12f9432414de73c0ccf66cb137401808c3127d25312d453</cites><orcidid>0000-0003-2231-170X ; 0000-0003-1907-9479 ; 0000-0002-7636-7170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-01761-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-01761-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Civalek, Ömer</creatorcontrib><creatorcontrib>Uzun, Büşra</creatorcontrib><creatorcontrib>Yaylı, Mustafa Özgür</creatorcontrib><title>An effective analytical method for buckling solutions of a restrained FGM nonlocal beam</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of restrained functionally graded nanobeam. In addition, buckling loads of functionally graded nanobeam are obtained by classical elasticity theory as well to highlight the size effects. The influences of various parameters such as the nonlocal parameter, rotational restraints and power-law index on the critical buckling load of the functionally graded nonlocal beam are investigated. The contribution of this paper is that it presents an efficient analytical solution for the buckling response of functionally graded nanobeam with non-rigid boundary conditions.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Beam theory (structures)</subject><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Euler-Bernoulli beams</subject><subject>Exact solutions</subject><subject>Fourier series</subject><subject>Functionally gradient materials</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlocal elasticity</subject><subject>Parameters</subject><subject>Size effects</subject><subject>Stability analysis</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTm0cnMshRbhYobxWXI5FGnTic1mRH6700dwZ3cxdmc73DPQeiawi0FkHdJAKeCAGMEqCwooSdoQkuQBDiwUzRhjJeEF8DP0UVKWwAuqRAT9DbvsPPemb75clh3uj30jdEt3rn-PVjsQ8T1YD7aptvgFNqhb0KXcPBY4-hSH3XTOYuXqyfcha4NR7R2eneJzrxuk7v61Sl6Xd6_LB7I-nn1uJivieG06kklrdS2qkvuraxnTmrKfCU4E1RYJ7kBY3xRmJpyKSAXKjPHpGWzLFbM-BTdjLn7GD6H_JDahiHmGkmxIl9ZCMmyi40uE0NK0Xm1j81Ox4OioI4DqnFAlQdUPwMqmiE-Qimbu42Lf9H_UN_0bXJj</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Civalek, Ömer</creator><creator>Uzun, Büşra</creator><creator>Yaylı, Mustafa Özgür</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2231-170X</orcidid><orcidid>https://orcid.org/0000-0003-1907-9479</orcidid><orcidid>https://orcid.org/0000-0002-7636-7170</orcidid></search><sort><creationdate>20220301</creationdate><title>An effective analytical method for buckling solutions of a restrained FGM nonlocal beam</title><author>Civalek, Ömer ; Uzun, Büşra ; Yaylı, Mustafa Özgür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-97d7ad9b83fd7b5e7a12f9432414de73c0ccf66cb137401808c3127d25312d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Beam theory (structures)</topic><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Euler-Bernoulli beams</topic><topic>Exact solutions</topic><topic>Fourier series</topic><topic>Functionally gradient materials</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlocal elasticity</topic><topic>Parameters</topic><topic>Size effects</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Civalek, Ömer</creatorcontrib><creatorcontrib>Uzun, Büşra</creatorcontrib><creatorcontrib>Yaylı, Mustafa Özgür</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Civalek, Ömer</au><au>Uzun, Büşra</au><au>Yaylı, Mustafa Özgür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective analytical method for buckling solutions of a restrained FGM nonlocal beam</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>41</volume><issue>2</issue><artnum>67</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This work studies the size-dependent stability analysis of restrained nanobeam with functionally graded material via nonlocal Euler–Bernoulli beam theory using the Fourier series. The nonlocal elasticity theory introduced by Eringen is utilized to show the size effect on the buckling response of restrained functionally graded nanobeam. In addition, buckling loads of functionally graded nanobeam are obtained by classical elasticity theory as well to highlight the size effects. The influences of various parameters such as the nonlocal parameter, rotational restraints and power-law index on the critical buckling load of the functionally graded nonlocal beam are investigated. The contribution of this paper is that it presents an efficient analytical solution for the buckling response of functionally graded nanobeam with non-rigid boundary conditions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-01761-1</doi><orcidid>https://orcid.org/0000-0003-2231-170X</orcidid><orcidid>https://orcid.org/0000-0003-1907-9479</orcidid><orcidid>https://orcid.org/0000-0002-7636-7170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2022-03, Vol.41 (2), Article 67
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2626286472
source SpringerLink Journals
subjects Applications of Mathematics
Applied physics
Beam theory (structures)
Boundary conditions
Buckling
Computational mathematics
Computational Mathematics and Numerical Analysis
Euler-Bernoulli beams
Exact solutions
Fourier series
Functionally gradient materials
Mathematical analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Nonlocal elasticity
Parameters
Size effects
Stability analysis
title An effective analytical method for buckling solutions of a restrained FGM nonlocal beam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20analytical%20method%20for%20buckling%20solutions%20of%20a%20restrained%20FGM%20nonlocal%20beam&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Civalek,%20%C3%96mer&rft.date=2022-03-01&rft.volume=41&rft.issue=2&rft.artnum=67&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-01761-1&rft_dat=%3Cproquest_cross%3E2626286472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626286472&rft_id=info:pmid/&rfr_iscdi=true