Diffusion in inhomogeneous media with periodic microstructures

Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2021-12, Vol.101 (12), p.n/a
Hauptverfasser: Amar, Micol, Andreucci, Daniele, Cirillo, Emilio N.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 101
creator Amar, Micol
Andreucci, Daniele
Cirillo, Emilio N.M.
description Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique. Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.
doi_str_mv 10.1002/zamm.202000070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626283748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626283748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-aecd3debed14d0b3e6672821cf8a2f1997a4d723666541d2be2a0d2bca0fd64a3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKtXzwuet04-muxehFKtCi1e9OIlpPmwKd2mJruU-tebpaJHZwbe5fdmhofQNYYRBiC3X6ppRgQI5BJwggZ4THDJAPApGgAwVhLCxTm6SGmdEVxjOkB39965LvmwLXw_q9CED7u1oUtFY41Xxd63q2Jnow_G66LxOobUxk63XbTpEp05tUn26keH6G328Dp9Kucvj8_TybzUdCygVFYbauzSGswMLKnlXJCKYO0qRRyua6GYEYRyzscMG7K0REEWrcAZzhQdopvj3l0Mn51NrVyHLm7zSUl47ooKVmVqdKT6H1O0Tu6ib1Q8SAyyz0j2GcnfjLKhPhr2fmMP_9DyfbJY_Hm_Aa_Ia_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626283748</pqid></control><display><type>article</type><title>Diffusion in inhomogeneous media with periodic microstructures</title><source>Wiley-Blackwell Journals</source><creator>Amar, Micol ; Andreucci, Daniele ; Cirillo, Emilio N.M.</creator><creatorcontrib>Amar, Micol ; Andreucci, Daniele ; Cirillo, Emilio N.M.</creatorcontrib><description>Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique. Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202000070</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Diffusion ; Fick's law ; Fokker–Planck diffusion law ; homogenization ; Inhomogeneous media ; Macroscopic models</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2021-12, Vol.101 (12), p.n/a</ispartof><rights>2021 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-aecd3debed14d0b3e6672821cf8a2f1997a4d723666541d2be2a0d2bca0fd64a3</citedby><cites>FETCH-LOGICAL-c3570-aecd3debed14d0b3e6672821cf8a2f1997a4d723666541d2be2a0d2bca0fd64a3</cites><orcidid>0000-0001-8361-358X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.202000070$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.202000070$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Amar, Micol</creatorcontrib><creatorcontrib>Andreucci, Daniele</creatorcontrib><creatorcontrib>Cirillo, Emilio N.M.</creatorcontrib><title>Diffusion in inhomogeneous media with periodic microstructures</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique. Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.</description><subject>Diffusion</subject><subject>Fick's law</subject><subject>Fokker–Planck diffusion law</subject><subject>homogenization</subject><subject>Inhomogeneous media</subject><subject>Macroscopic models</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1LAzEQxYMoWKtXzwuet04-muxehFKtCi1e9OIlpPmwKd2mJruU-tebpaJHZwbe5fdmhofQNYYRBiC3X6ppRgQI5BJwggZ4THDJAPApGgAwVhLCxTm6SGmdEVxjOkB39965LvmwLXw_q9CED7u1oUtFY41Xxd63q2Jnow_G66LxOobUxk63XbTpEp05tUn26keH6G328Dp9Kucvj8_TybzUdCygVFYbauzSGswMLKnlXJCKYO0qRRyua6GYEYRyzscMG7K0REEWrcAZzhQdopvj3l0Mn51NrVyHLm7zSUl47ooKVmVqdKT6H1O0Tu6ib1Q8SAyyz0j2GcnfjLKhPhr2fmMP_9DyfbJY_Hm_Aa_Ia_I</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Amar, Micol</creator><creator>Andreucci, Daniele</creator><creator>Cirillo, Emilio N.M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8361-358X</orcidid></search><sort><creationdate>202112</creationdate><title>Diffusion in inhomogeneous media with periodic microstructures</title><author>Amar, Micol ; Andreucci, Daniele ; Cirillo, Emilio N.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-aecd3debed14d0b3e6672821cf8a2f1997a4d723666541d2be2a0d2bca0fd64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Diffusion</topic><topic>Fick's law</topic><topic>Fokker–Planck diffusion law</topic><topic>homogenization</topic><topic>Inhomogeneous media</topic><topic>Macroscopic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amar, Micol</creatorcontrib><creatorcontrib>Andreucci, Daniele</creatorcontrib><creatorcontrib>Cirillo, Emilio N.M.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amar, Micol</au><au>Andreucci, Daniele</au><au>Cirillo, Emilio N.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion in inhomogeneous media with periodic microstructures</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2021-12</date><risdate>2021</risdate><volume>101</volume><issue>12</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique. Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202000070</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8361-358X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2021-12, Vol.101 (12), p.n/a
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_journals_2626283748
source Wiley-Blackwell Journals
subjects Diffusion
Fick's law
Fokker–Planck diffusion law
homogenization
Inhomogeneous media
Macroscopic models
title Diffusion in inhomogeneous media with periodic microstructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20in%20inhomogeneous%20media%20with%20periodic%20microstructures&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Amar,%20Micol&rft.date=2021-12&rft.volume=101&rft.issue=12&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202000070&rft_dat=%3Cproquest_cross%3E2626283748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626283748&rft_id=info:pmid/&rfr_iscdi=true