Diffusion in inhomogeneous media with periodic microstructures
Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Mechanik 2021-12, Vol.101 (12), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 101 |
creator | Amar, Micol Andreucci, Daniele Cirillo, Emilio N.M. |
description | Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.
Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique. |
doi_str_mv | 10.1002/zamm.202000070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626283748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626283748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-aecd3debed14d0b3e6672821cf8a2f1997a4d723666541d2be2a0d2bca0fd64a3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKtXzwuet04-muxehFKtCi1e9OIlpPmwKd2mJruU-tebpaJHZwbe5fdmhofQNYYRBiC3X6ppRgQI5BJwggZ4THDJAPApGgAwVhLCxTm6SGmdEVxjOkB39965LvmwLXw_q9CED7u1oUtFY41Xxd63q2Jnow_G66LxOobUxk63XbTpEp05tUn26keH6G328Dp9Kucvj8_TybzUdCygVFYbauzSGswMLKnlXJCKYO0qRRyua6GYEYRyzscMG7K0REEWrcAZzhQdopvj3l0Mn51NrVyHLm7zSUl47ooKVmVqdKT6H1O0Tu6ib1Q8SAyyz0j2GcnfjLKhPhr2fmMP_9DyfbJY_Hm_Aa_Ia_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626283748</pqid></control><display><type>article</type><title>Diffusion in inhomogeneous media with periodic microstructures</title><source>Wiley-Blackwell Journals</source><creator>Amar, Micol ; Andreucci, Daniele ; Cirillo, Emilio N.M.</creator><creatorcontrib>Amar, Micol ; Andreucci, Daniele ; Cirillo, Emilio N.M.</creatorcontrib><description>Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.
Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202000070</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Diffusion ; Fick's law ; Fokker–Planck diffusion law ; homogenization ; Inhomogeneous media ; Macroscopic models</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2021-12, Vol.101 (12), p.n/a</ispartof><rights>2021 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-aecd3debed14d0b3e6672821cf8a2f1997a4d723666541d2be2a0d2bca0fd64a3</citedby><cites>FETCH-LOGICAL-c3570-aecd3debed14d0b3e6672821cf8a2f1997a4d723666541d2be2a0d2bca0fd64a3</cites><orcidid>0000-0001-8361-358X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.202000070$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.202000070$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Amar, Micol</creatorcontrib><creatorcontrib>Andreucci, Daniele</creatorcontrib><creatorcontrib>Cirillo, Emilio N.M.</creatorcontrib><title>Diffusion in inhomogeneous media with periodic microstructures</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.
Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.</description><subject>Diffusion</subject><subject>Fick's law</subject><subject>Fokker–Planck diffusion law</subject><subject>homogenization</subject><subject>Inhomogeneous media</subject><subject>Macroscopic models</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1LAzEQxYMoWKtXzwuet04-muxehFKtCi1e9OIlpPmwKd2mJruU-tebpaJHZwbe5fdmhofQNYYRBiC3X6ppRgQI5BJwggZ4THDJAPApGgAwVhLCxTm6SGmdEVxjOkB39965LvmwLXw_q9CED7u1oUtFY41Xxd63q2Jnow_G66LxOobUxk63XbTpEp05tUn26keH6G328Dp9Kucvj8_TybzUdCygVFYbauzSGswMLKnlXJCKYO0qRRyua6GYEYRyzscMG7K0REEWrcAZzhQdopvj3l0Mn51NrVyHLm7zSUl47ooKVmVqdKT6H1O0Tu6ib1Q8SAyyz0j2GcnfjLKhPhr2fmMP_9DyfbJY_Hm_Aa_Ia_I</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Amar, Micol</creator><creator>Andreucci, Daniele</creator><creator>Cirillo, Emilio N.M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8361-358X</orcidid></search><sort><creationdate>202112</creationdate><title>Diffusion in inhomogeneous media with periodic microstructures</title><author>Amar, Micol ; Andreucci, Daniele ; Cirillo, Emilio N.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-aecd3debed14d0b3e6672821cf8a2f1997a4d723666541d2be2a0d2bca0fd64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Diffusion</topic><topic>Fick's law</topic><topic>Fokker–Planck diffusion law</topic><topic>homogenization</topic><topic>Inhomogeneous media</topic><topic>Macroscopic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amar, Micol</creatorcontrib><creatorcontrib>Andreucci, Daniele</creatorcontrib><creatorcontrib>Cirillo, Emilio N.M.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amar, Micol</au><au>Andreucci, Daniele</au><au>Cirillo, Emilio N.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion in inhomogeneous media with periodic microstructures</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2021-12</date><risdate>2021</risdate><volume>101</volume><issue>12</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.
Diffusion in inhomogeneous materials can be described by both the Fick and Fokker–Planck diffusion equations. Here, we study a mixed Fick and Fokker–Planck diffusion problem with coefficients rapidly oscillating both in space and time. We obtain macroscopic models performing the homogenization limit by means of the unfolding technique.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202000070</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8361-358X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2021-12, Vol.101 (12), p.n/a |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_journals_2626283748 |
source | Wiley-Blackwell Journals |
subjects | Diffusion Fick's law Fokker–Planck diffusion law homogenization Inhomogeneous media Macroscopic models |
title | Diffusion in inhomogeneous media with periodic microstructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20in%20inhomogeneous%20media%20with%20periodic%20microstructures&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Amar,%20Micol&rft.date=2021-12&rft.volume=101&rft.issue=12&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202000070&rft_dat=%3Cproquest_cross%3E2626283748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626283748&rft_id=info:pmid/&rfr_iscdi=true |