Degradation analysis on trend gamma process
Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach i...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2022-03, Vol.38 (2), p.941-956 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 956 |
---|---|
container_issue | 2 |
container_start_page | 941 |
container_title | Quality and reliability engineering international |
container_volume | 38 |
creator | Wang, Yi‐Fu Huang, Yufen Liao, Wei‐Chieh |
description | Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach is suggested to collect sufficient degradation data for estimating the product's lifetime distribution more accurately. In numerical applications, the gamma process (GP) is commonly used when the degradation path is strictly increasing. However, in some circumstances, the GP is not able to successfully capture the degradation path. One resolution to tackle this problem is to consider the random effect into the GP model. In this paper, we propose a trend gamma process (TGP), which integrated the merits of trend function into a GP model, as an alternative approach to overcome this obstacle. The proposed TGP model is a generalized formulation of GP model, and it is attempted to transform a monotonic stochastic process into a GP. The results based on simulation studies and real data examples illustrate that our proposed TGP model is suitable for widely use when the degradation path is monotonically increasing. |
doi_str_mv | 10.1002/qre.3026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626169486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626169486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-6dc6f1ea3ccd3e27f1c4add69826ca97e820a205cd2e98499ba29dff34d4991f3</originalsourceid><addsrcrecordid>eNp10EtLAzEQB_AgCq5V8CMseBFkax5rNjlKrQ8oiKLnMCaTsmUfbbJF9tubul49zQz8mBn-hFwyOmeU8ttdwLmgXB6RjFGtCyaFOiYZrUpVKMqqU3IW44bShLXKyM0DrgM4GOq-y6GDZox1zFM_BOxcvoa2hXwbeosxnpMTD03Ei786I5-Py4_Fc7F6fXpZ3K8Ky7WQhXRWeoYgrHUCeeWZLcE5qRWXFnSFilPg9M46jlqVWn8B1857Ubo0MC9m5Gram-7u9hgHs-n3If0WDZdcMqlLJZO6npQNfYwBvdmGuoUwGkbNIQqTojCHKBItJvpdNzj-68zb-_LX_wD4a163</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626169486</pqid></control><display><type>article</type><title>Degradation analysis on trend gamma process</title><source>Access via Wiley Online Library</source><creator>Wang, Yi‐Fu ; Huang, Yufen ; Liao, Wei‐Chieh</creator><creatorcontrib>Wang, Yi‐Fu ; Huang, Yufen ; Liao, Wei‐Chieh</creatorcontrib><description>Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach is suggested to collect sufficient degradation data for estimating the product's lifetime distribution more accurately. In numerical applications, the gamma process (GP) is commonly used when the degradation path is strictly increasing. However, in some circumstances, the GP is not able to successfully capture the degradation path. One resolution to tackle this problem is to consider the random effect into the GP model. In this paper, we propose a trend gamma process (TGP), which integrated the merits of trend function into a GP model, as an alternative approach to overcome this obstacle. The proposed TGP model is a generalized formulation of GP model, and it is attempted to transform a monotonic stochastic process into a GP. The results based on simulation studies and real data examples illustrate that our proposed TGP model is suitable for widely use when the degradation path is monotonically increasing.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3026</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Degradation ; degradation analysis ; gamma process ; Reliability ; stochastic process ; Stochastic processes ; trend function</subject><ispartof>Quality and reliability engineering international, 2022-03, Vol.38 (2), p.941-956</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-6dc6f1ea3ccd3e27f1c4add69826ca97e820a205cd2e98499ba29dff34d4991f3</citedby><cites>FETCH-LOGICAL-c2936-6dc6f1ea3ccd3e27f1c4add69826ca97e820a205cd2e98499ba29dff34d4991f3</cites><orcidid>0000-0002-9347-0583 ; 0000-0001-8536-0774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3026$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3026$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Wang, Yi‐Fu</creatorcontrib><creatorcontrib>Huang, Yufen</creatorcontrib><creatorcontrib>Liao, Wei‐Chieh</creatorcontrib><title>Degradation analysis on trend gamma process</title><title>Quality and reliability engineering international</title><description>Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach is suggested to collect sufficient degradation data for estimating the product's lifetime distribution more accurately. In numerical applications, the gamma process (GP) is commonly used when the degradation path is strictly increasing. However, in some circumstances, the GP is not able to successfully capture the degradation path. One resolution to tackle this problem is to consider the random effect into the GP model. In this paper, we propose a trend gamma process (TGP), which integrated the merits of trend function into a GP model, as an alternative approach to overcome this obstacle. The proposed TGP model is a generalized formulation of GP model, and it is attempted to transform a monotonic stochastic process into a GP. The results based on simulation studies and real data examples illustrate that our proposed TGP model is suitable for widely use when the degradation path is monotonically increasing.</description><subject>Degradation</subject><subject>degradation analysis</subject><subject>gamma process</subject><subject>Reliability</subject><subject>stochastic process</subject><subject>Stochastic processes</subject><subject>trend function</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQB_AgCq5V8CMseBFkax5rNjlKrQ8oiKLnMCaTsmUfbbJF9tubul49zQz8mBn-hFwyOmeU8ttdwLmgXB6RjFGtCyaFOiYZrUpVKMqqU3IW44bShLXKyM0DrgM4GOq-y6GDZox1zFM_BOxcvoa2hXwbeosxnpMTD03Ei786I5-Py4_Fc7F6fXpZ3K8Ky7WQhXRWeoYgrHUCeeWZLcE5qRWXFnSFilPg9M46jlqVWn8B1857Ubo0MC9m5Gram-7u9hgHs-n3If0WDZdcMqlLJZO6npQNfYwBvdmGuoUwGkbNIQqTojCHKBItJvpdNzj-68zb-_LX_wD4a163</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Wang, Yi‐Fu</creator><creator>Huang, Yufen</creator><creator>Liao, Wei‐Chieh</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-9347-0583</orcidid><orcidid>https://orcid.org/0000-0001-8536-0774</orcidid></search><sort><creationdate>202203</creationdate><title>Degradation analysis on trend gamma process</title><author>Wang, Yi‐Fu ; Huang, Yufen ; Liao, Wei‐Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-6dc6f1ea3ccd3e27f1c4add69826ca97e820a205cd2e98499ba29dff34d4991f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Degradation</topic><topic>degradation analysis</topic><topic>gamma process</topic><topic>Reliability</topic><topic>stochastic process</topic><topic>Stochastic processes</topic><topic>trend function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi‐Fu</creatorcontrib><creatorcontrib>Huang, Yufen</creatorcontrib><creatorcontrib>Liao, Wei‐Chieh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi‐Fu</au><au>Huang, Yufen</au><au>Liao, Wei‐Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation analysis on trend gamma process</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2022-03</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>941</spage><epage>956</epage><pages>941-956</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach is suggested to collect sufficient degradation data for estimating the product's lifetime distribution more accurately. In numerical applications, the gamma process (GP) is commonly used when the degradation path is strictly increasing. However, in some circumstances, the GP is not able to successfully capture the degradation path. One resolution to tackle this problem is to consider the random effect into the GP model. In this paper, we propose a trend gamma process (TGP), which integrated the merits of trend function into a GP model, as an alternative approach to overcome this obstacle. The proposed TGP model is a generalized formulation of GP model, and it is attempted to transform a monotonic stochastic process into a GP. The results based on simulation studies and real data examples illustrate that our proposed TGP model is suitable for widely use when the degradation path is monotonically increasing.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3026</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9347-0583</orcidid><orcidid>https://orcid.org/0000-0001-8536-0774</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2022-03, Vol.38 (2), p.941-956 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2626169486 |
source | Access via Wiley Online Library |
subjects | Degradation degradation analysis gamma process Reliability stochastic process Stochastic processes trend function |
title | Degradation analysis on trend gamma process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20analysis%20on%20trend%20gamma%20process&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Wang,%20Yi%E2%80%90Fu&rft.date=2022-03&rft.volume=38&rft.issue=2&rft.spage=941&rft.epage=956&rft.pages=941-956&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3026&rft_dat=%3Cproquest_cross%3E2626169486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626169486&rft_id=info:pmid/&rfr_iscdi=true |