Degradation analysis on trend gamma process

Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2022-03, Vol.38 (2), p.941-956
Hauptverfasser: Wang, Yi‐Fu, Huang, Yufen, Liao, Wei‐Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 956
container_issue 2
container_start_page 941
container_title Quality and reliability engineering international
container_volume 38
creator Wang, Yi‐Fu
Huang, Yufen
Liao, Wei‐Chieh
description Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach is suggested to collect sufficient degradation data for estimating the product's lifetime distribution more accurately. In numerical applications, the gamma process (GP) is commonly used when the degradation path is strictly increasing. However, in some circumstances, the GP is not able to successfully capture the degradation path. One resolution to tackle this problem is to consider the random effect into the GP model. In this paper, we propose a trend gamma process (TGP), which integrated the merits of trend function into a GP model, as an alternative approach to overcome this obstacle. The proposed TGP model is a generalized formulation of GP model, and it is attempted to transform a monotonic stochastic process into a GP. The results based on simulation studies and real data examples illustrate that our proposed TGP model is suitable for widely use when the degradation path is monotonically increasing.
doi_str_mv 10.1002/qre.3026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626169486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626169486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-6dc6f1ea3ccd3e27f1c4add69826ca97e820a205cd2e98499ba29dff34d4991f3</originalsourceid><addsrcrecordid>eNp10EtLAzEQB_AgCq5V8CMseBFkax5rNjlKrQ8oiKLnMCaTsmUfbbJF9tubul49zQz8mBn-hFwyOmeU8ttdwLmgXB6RjFGtCyaFOiYZrUpVKMqqU3IW44bShLXKyM0DrgM4GOq-y6GDZox1zFM_BOxcvoa2hXwbeosxnpMTD03Ei786I5-Py4_Fc7F6fXpZ3K8Ky7WQhXRWeoYgrHUCeeWZLcE5qRWXFnSFilPg9M46jlqVWn8B1857Ubo0MC9m5Gram-7u9hgHs-n3If0WDZdcMqlLJZO6npQNfYwBvdmGuoUwGkbNIQqTojCHKBItJvpdNzj-68zb-_LX_wD4a163</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626169486</pqid></control><display><type>article</type><title>Degradation analysis on trend gamma process</title><source>Access via Wiley Online Library</source><creator>Wang, Yi‐Fu ; Huang, Yufen ; Liao, Wei‐Chieh</creator><creatorcontrib>Wang, Yi‐Fu ; Huang, Yufen ; Liao, Wei‐Chieh</creatorcontrib><description>Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach is suggested to collect sufficient degradation data for estimating the product's lifetime distribution more accurately. In numerical applications, the gamma process (GP) is commonly used when the degradation path is strictly increasing. However, in some circumstances, the GP is not able to successfully capture the degradation path. One resolution to tackle this problem is to consider the random effect into the GP model. In this paper, we propose a trend gamma process (TGP), which integrated the merits of trend function into a GP model, as an alternative approach to overcome this obstacle. The proposed TGP model is a generalized formulation of GP model, and it is attempted to transform a monotonic stochastic process into a GP. The results based on simulation studies and real data examples illustrate that our proposed TGP model is suitable for widely use when the degradation path is monotonically increasing.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3026</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Degradation ; degradation analysis ; gamma process ; Reliability ; stochastic process ; Stochastic processes ; trend function</subject><ispartof>Quality and reliability engineering international, 2022-03, Vol.38 (2), p.941-956</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-6dc6f1ea3ccd3e27f1c4add69826ca97e820a205cd2e98499ba29dff34d4991f3</citedby><cites>FETCH-LOGICAL-c2936-6dc6f1ea3ccd3e27f1c4add69826ca97e820a205cd2e98499ba29dff34d4991f3</cites><orcidid>0000-0002-9347-0583 ; 0000-0001-8536-0774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3026$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3026$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Wang, Yi‐Fu</creatorcontrib><creatorcontrib>Huang, Yufen</creatorcontrib><creatorcontrib>Liao, Wei‐Chieh</creatorcontrib><title>Degradation analysis on trend gamma process</title><title>Quality and reliability engineering international</title><description>Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach is suggested to collect sufficient degradation data for estimating the product's lifetime distribution more accurately. In numerical applications, the gamma process (GP) is commonly used when the degradation path is strictly increasing. However, in some circumstances, the GP is not able to successfully capture the degradation path. One resolution to tackle this problem is to consider the random effect into the GP model. In this paper, we propose a trend gamma process (TGP), which integrated the merits of trend function into a GP model, as an alternative approach to overcome this obstacle. The proposed TGP model is a generalized formulation of GP model, and it is attempted to transform a monotonic stochastic process into a GP. The results based on simulation studies and real data examples illustrate that our proposed TGP model is suitable for widely use when the degradation path is monotonically increasing.</description><subject>Degradation</subject><subject>degradation analysis</subject><subject>gamma process</subject><subject>Reliability</subject><subject>stochastic process</subject><subject>Stochastic processes</subject><subject>trend function</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQB_AgCq5V8CMseBFkax5rNjlKrQ8oiKLnMCaTsmUfbbJF9tubul49zQz8mBn-hFwyOmeU8ttdwLmgXB6RjFGtCyaFOiYZrUpVKMqqU3IW44bShLXKyM0DrgM4GOq-y6GDZox1zFM_BOxcvoa2hXwbeosxnpMTD03Ei786I5-Py4_Fc7F6fXpZ3K8Ky7WQhXRWeoYgrHUCeeWZLcE5qRWXFnSFilPg9M46jlqVWn8B1857Ubo0MC9m5Gram-7u9hgHs-n3If0WDZdcMqlLJZO6npQNfYwBvdmGuoUwGkbNIQqTojCHKBItJvpdNzj-68zb-_LX_wD4a163</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Wang, Yi‐Fu</creator><creator>Huang, Yufen</creator><creator>Liao, Wei‐Chieh</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-9347-0583</orcidid><orcidid>https://orcid.org/0000-0001-8536-0774</orcidid></search><sort><creationdate>202203</creationdate><title>Degradation analysis on trend gamma process</title><author>Wang, Yi‐Fu ; Huang, Yufen ; Liao, Wei‐Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-6dc6f1ea3ccd3e27f1c4add69826ca97e820a205cd2e98499ba29dff34d4991f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Degradation</topic><topic>degradation analysis</topic><topic>gamma process</topic><topic>Reliability</topic><topic>stochastic process</topic><topic>Stochastic processes</topic><topic>trend function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi‐Fu</creatorcontrib><creatorcontrib>Huang, Yufen</creatorcontrib><creatorcontrib>Liao, Wei‐Chieh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi‐Fu</au><au>Huang, Yufen</au><au>Liao, Wei‐Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation analysis on trend gamma process</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2022-03</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>941</spage><epage>956</epage><pages>941-956</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Manufactures always face a big challenge to obtain the sufficient reliability information for high‐quality products when only a relatively short time period is available for an internal life testing. Fortunately, if QCs exists, whose degradation over time can be related to reliability, an approach is suggested to collect sufficient degradation data for estimating the product's lifetime distribution more accurately. In numerical applications, the gamma process (GP) is commonly used when the degradation path is strictly increasing. However, in some circumstances, the GP is not able to successfully capture the degradation path. One resolution to tackle this problem is to consider the random effect into the GP model. In this paper, we propose a trend gamma process (TGP), which integrated the merits of trend function into a GP model, as an alternative approach to overcome this obstacle. The proposed TGP model is a generalized formulation of GP model, and it is attempted to transform a monotonic stochastic process into a GP. The results based on simulation studies and real data examples illustrate that our proposed TGP model is suitable for widely use when the degradation path is monotonically increasing.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3026</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9347-0583</orcidid><orcidid>https://orcid.org/0000-0001-8536-0774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2022-03, Vol.38 (2), p.941-956
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_2626169486
source Access via Wiley Online Library
subjects Degradation
degradation analysis
gamma process
Reliability
stochastic process
Stochastic processes
trend function
title Degradation analysis on trend gamma process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20analysis%20on%20trend%20gamma%20process&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Wang,%20Yi%E2%80%90Fu&rft.date=2022-03&rft.volume=38&rft.issue=2&rft.spage=941&rft.epage=956&rft.pages=941-956&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3026&rft_dat=%3Cproquest_cross%3E2626169486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626169486&rft_id=info:pmid/&rfr_iscdi=true