A new multivariate CUSUM chart for monitoring of covariance matrix with individual observations under estimated parameter
Multivariate charts for process dispersion detect changes in the variance‐covariance matrix of a process. Most of the existing multivariate charts for monitoring the dispersion of individual observations were designed based on exponentially weighted moving average (EWMA) charting schemes. However, a...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2022-03, Vol.38 (2), p.834-847 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 847 |
---|---|
container_issue | 2 |
container_start_page | 834 |
container_title | Quality and reliability engineering international |
container_volume | 38 |
creator | Ajadi, Jimoh Olawale Wong, Angus Mahmood, Tahir Hung, Kevin |
description | Multivariate charts for process dispersion detect changes in the variance‐covariance matrix of a process. Most of the existing multivariate charts for monitoring the dispersion of individual observations were designed based on exponentially weighted moving average (EWMA) charting schemes. However, an alternative to the EWMA scheme is the cumulative sum (CUSUM) control chart, which has proven to be better in some cases. In the last decades, few studies have been conducted on methods based on multivariate CUSUM (MCUSUM) schemes to monitor the covariance matrix of individual observations. Consequently, we propose a new MCUSUM dispersion chart. Besides, most of the existing methods have been developed by assuming that the process parameters are known and that the process distribution is normal; these assumptions are not always true in practice. Hence, we compare the performance of the proposed chart and its counterparts based on the estimation effects under normal and non‐normal distributions. The results show that the proposed chart outperforms the other charts in terms of minor shifts in the process. Similarly, the proposed chart is the most robust to the normality assumption among the compared charts. The average value of the conditional average run length was used as the performance measure. Finally, the proposed method was also implemented with a simulated dataset to support the stated proposal findings. |
doi_str_mv | 10.1002/qre.3017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626169362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626169362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-831b94c5a4e6897351f6b4a2e032c0220f1be031eacf3aa5e3a590672f8967d83</originalsourceid><addsrcrecordid>eNp10EtLAzEQB_AgCtYq-BECXrxszWM3uzmWUh9QER89L9ndiU3ZJm0229pvb9p69TTD8GNm-CN0S8mIEsIeNh5GnND8DA0okTKhghfnaEDytEiKOL9EV123JCRiWQzQfowt7PCqb4PZKm9UADyZf85fcb1QPmDtPF45a4Lzxn5jp3Htjs7WgFcqePODdyYssLGN2ZqmVy12VQd-q4JxtsO9bcBj6IKJGhq8Vl6tIIC_RhdatR3c_NUhmj9OvybPyezt6WUyniU1kzxPCk4rmdaZSkEUMucZ1aJKFQPCWU0YI5pWsaegas2VyoCrTBKRM11IkTcFH6K70961d5s-PlIuXe9tPFkywQQVkgsW1f1J1d51nQddrn382O9LSspDsGUMtjwEG2lyojvTwv5fV75_TI_-F9KHezQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626169362</pqid></control><display><type>article</type><title>A new multivariate CUSUM chart for monitoring of covariance matrix with individual observations under estimated parameter</title><source>Access via Wiley Online Library</source><creator>Ajadi, Jimoh Olawale ; Wong, Angus ; Mahmood, Tahir ; Hung, Kevin</creator><creatorcontrib>Ajadi, Jimoh Olawale ; Wong, Angus ; Mahmood, Tahir ; Hung, Kevin</creatorcontrib><description>Multivariate charts for process dispersion detect changes in the variance‐covariance matrix of a process. Most of the existing multivariate charts for monitoring the dispersion of individual observations were designed based on exponentially weighted moving average (EWMA) charting schemes. However, an alternative to the EWMA scheme is the cumulative sum (CUSUM) control chart, which has proven to be better in some cases. In the last decades, few studies have been conducted on methods based on multivariate CUSUM (MCUSUM) schemes to monitor the covariance matrix of individual observations. Consequently, we propose a new MCUSUM dispersion chart. Besides, most of the existing methods have been developed by assuming that the process parameters are known and that the process distribution is normal; these assumptions are not always true in practice. Hence, we compare the performance of the proposed chart and its counterparts based on the estimation effects under normal and non‐normal distributions. The results show that the proposed chart outperforms the other charts in terms of minor shifts in the process. Similarly, the proposed chart is the most robust to the normality assumption among the compared charts. The average value of the conditional average run length was used as the performance measure. Finally, the proposed method was also implemented with a simulated dataset to support the stated proposal findings.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3017</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control charts ; Covariance matrix ; CUSUM ; CUSUM charts ; Dispersion ; estimation effects ; individual observation ; Monitoring ; Multivariate analysis ; multivariate control chart ; nonnormality ; Parameter estimation ; Process parameters</subject><ispartof>Quality and reliability engineering international, 2022-03, Vol.38 (2), p.834-847</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-831b94c5a4e6897351f6b4a2e032c0220f1be031eacf3aa5e3a590672f8967d83</citedby><cites>FETCH-LOGICAL-c2937-831b94c5a4e6897351f6b4a2e032c0220f1be031eacf3aa5e3a590672f8967d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3017$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3017$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ajadi, Jimoh Olawale</creatorcontrib><creatorcontrib>Wong, Angus</creatorcontrib><creatorcontrib>Mahmood, Tahir</creatorcontrib><creatorcontrib>Hung, Kevin</creatorcontrib><title>A new multivariate CUSUM chart for monitoring of covariance matrix with individual observations under estimated parameter</title><title>Quality and reliability engineering international</title><description>Multivariate charts for process dispersion detect changes in the variance‐covariance matrix of a process. Most of the existing multivariate charts for monitoring the dispersion of individual observations were designed based on exponentially weighted moving average (EWMA) charting schemes. However, an alternative to the EWMA scheme is the cumulative sum (CUSUM) control chart, which has proven to be better in some cases. In the last decades, few studies have been conducted on methods based on multivariate CUSUM (MCUSUM) schemes to monitor the covariance matrix of individual observations. Consequently, we propose a new MCUSUM dispersion chart. Besides, most of the existing methods have been developed by assuming that the process parameters are known and that the process distribution is normal; these assumptions are not always true in practice. Hence, we compare the performance of the proposed chart and its counterparts based on the estimation effects under normal and non‐normal distributions. The results show that the proposed chart outperforms the other charts in terms of minor shifts in the process. Similarly, the proposed chart is the most robust to the normality assumption among the compared charts. The average value of the conditional average run length was used as the performance measure. Finally, the proposed method was also implemented with a simulated dataset to support the stated proposal findings.</description><subject>Control charts</subject><subject>Covariance matrix</subject><subject>CUSUM</subject><subject>CUSUM charts</subject><subject>Dispersion</subject><subject>estimation effects</subject><subject>individual observation</subject><subject>Monitoring</subject><subject>Multivariate analysis</subject><subject>multivariate control chart</subject><subject>nonnormality</subject><subject>Parameter estimation</subject><subject>Process parameters</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQB_AgCtYq-BECXrxszWM3uzmWUh9QER89L9ndiU3ZJm0229pvb9p69TTD8GNm-CN0S8mIEsIeNh5GnND8DA0okTKhghfnaEDytEiKOL9EV123JCRiWQzQfowt7PCqb4PZKm9UADyZf85fcb1QPmDtPF45a4Lzxn5jp3Htjs7WgFcqePODdyYssLGN2ZqmVy12VQd-q4JxtsO9bcBj6IKJGhq8Vl6tIIC_RhdatR3c_NUhmj9OvybPyezt6WUyniU1kzxPCk4rmdaZSkEUMucZ1aJKFQPCWU0YI5pWsaegas2VyoCrTBKRM11IkTcFH6K70961d5s-PlIuXe9tPFkywQQVkgsW1f1J1d51nQddrn382O9LSspDsGUMtjwEG2lyojvTwv5fV75_TI_-F9KHezQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Ajadi, Jimoh Olawale</creator><creator>Wong, Angus</creator><creator>Mahmood, Tahir</creator><creator>Hung, Kevin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>202203</creationdate><title>A new multivariate CUSUM chart for monitoring of covariance matrix with individual observations under estimated parameter</title><author>Ajadi, Jimoh Olawale ; Wong, Angus ; Mahmood, Tahir ; Hung, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-831b94c5a4e6897351f6b4a2e032c0220f1be031eacf3aa5e3a590672f8967d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control charts</topic><topic>Covariance matrix</topic><topic>CUSUM</topic><topic>CUSUM charts</topic><topic>Dispersion</topic><topic>estimation effects</topic><topic>individual observation</topic><topic>Monitoring</topic><topic>Multivariate analysis</topic><topic>multivariate control chart</topic><topic>nonnormality</topic><topic>Parameter estimation</topic><topic>Process parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajadi, Jimoh Olawale</creatorcontrib><creatorcontrib>Wong, Angus</creatorcontrib><creatorcontrib>Mahmood, Tahir</creatorcontrib><creatorcontrib>Hung, Kevin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajadi, Jimoh Olawale</au><au>Wong, Angus</au><au>Mahmood, Tahir</au><au>Hung, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new multivariate CUSUM chart for monitoring of covariance matrix with individual observations under estimated parameter</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2022-03</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>834</spage><epage>847</epage><pages>834-847</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Multivariate charts for process dispersion detect changes in the variance‐covariance matrix of a process. Most of the existing multivariate charts for monitoring the dispersion of individual observations were designed based on exponentially weighted moving average (EWMA) charting schemes. However, an alternative to the EWMA scheme is the cumulative sum (CUSUM) control chart, which has proven to be better in some cases. In the last decades, few studies have been conducted on methods based on multivariate CUSUM (MCUSUM) schemes to monitor the covariance matrix of individual observations. Consequently, we propose a new MCUSUM dispersion chart. Besides, most of the existing methods have been developed by assuming that the process parameters are known and that the process distribution is normal; these assumptions are not always true in practice. Hence, we compare the performance of the proposed chart and its counterparts based on the estimation effects under normal and non‐normal distributions. The results show that the proposed chart outperforms the other charts in terms of minor shifts in the process. Similarly, the proposed chart is the most robust to the normality assumption among the compared charts. The average value of the conditional average run length was used as the performance measure. Finally, the proposed method was also implemented with a simulated dataset to support the stated proposal findings.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3017</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2022-03, Vol.38 (2), p.834-847 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2626169362 |
source | Access via Wiley Online Library |
subjects | Control charts Covariance matrix CUSUM CUSUM charts Dispersion estimation effects individual observation Monitoring Multivariate analysis multivariate control chart nonnormality Parameter estimation Process parameters |
title | A new multivariate CUSUM chart for monitoring of covariance matrix with individual observations under estimated parameter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20multivariate%20CUSUM%20chart%20for%20monitoring%20of%20covariance%20matrix%20with%20individual%20observations%20under%20estimated%20parameter&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Ajadi,%20Jimoh%20Olawale&rft.date=2022-03&rft.volume=38&rft.issue=2&rft.spage=834&rft.epage=847&rft.pages=834-847&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3017&rft_dat=%3Cproquest_cross%3E2626169362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626169362&rft_id=info:pmid/&rfr_iscdi=true |