Online monitoring of process variance drifts for leptokurtic and heavy‐tailed data
In many applications, monitoring the variance of a process online is very important. For example, in industrial and medical fields and weather and ocean research, monitoring the variance drift in processes can effectively reduce losses. This monitoring is especially important in finance because data...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2022-03, Vol.38 (2), p.1045-1059 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1059 |
---|---|
container_issue | 2 |
container_start_page | 1045 |
container_title | Quality and reliability engineering international |
container_volume | 38 |
creator | Tan, Wushuang Liu, Liu |
description | In many applications, monitoring the variance of a process online is very important. For example, in industrial and medical fields and weather and ocean research, monitoring the variance drift in processes can effectively reduce losses. This monitoring is especially important in finance because data tend to have leptokurtic and heavy‐tailed characteristics and there are few control charts for the online monitoring of variance drifts. Therefore, we develop a new exponentially weighted moving average control chart based on the sample quantiles of all pairwise differences: the Qnα$Q_n^\alpha$ EWMA control chart. This control chart shows a good performance in the online monitoring of variance drifts when the distribution is leptokurtic and heavy‐tailed, as is the case with the Student's t‐distribution, the Pareto distribution, and the generalized error distribution. To visually explain the Qnα$Q_n^\alpha$ EWMA control chart for monitoring the effect of variance drifts, we compare the monitoring efficiency of the Qnα$Q_n^\alpha$ EWMA control chart with that of two other control charts (the MDEWMA control chart and the GVA control chart) using Monte Carlo simulations and the RMI. The results show that the Qnα$Q_n^\alpha$ EWMA control chart is the most effective for monitoring the variance drifts of data with leptokurtic and heavy‐tailed distributions. Additionally, we use these three control charts to monitor the variance drifts of the weekly return rate of gold (data from Yahoo Finance) to illustrate the application of the Qnα$Q_n^\alpha$ EWMA control chart in practical cases. |
doi_str_mv | 10.1002/qre.3033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626168609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626168609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2543-96d13873ef7e5658a4781aa500ece2a8368b159917352791c4216779f513e0983</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYq-AgBN26m5jK5LaXUCxSKUtchzpzR1OmkTaaV7nwEn9EnMVq3rs7m45z__AidUzKihLCrdYQRJ5wfoAElxhRUcn2IBkSVutCEqmN0ktKCkIyNHqD5rGt9B3gZOt-H6LsXHBq8iqGClPDWRe-6CnAdfdMn3ISIW1j14W0Te19h19X4Fdx29_Xx2TvfQo1r17tTdNS4NsHZ3xyip5vJfHxXTGe39-PraVExUfLCyJpyrTg0CoQU2pVKU-cEIVABc5pL_UyFMVRxwZShVcmoVMo0gnLI6fkQXez35rzrDaTeLsImdvmkZZJJKrUkJqvLvapiSClCY1fRL13cWUrsT2c2d2Z_Osu02NP3_MvuX2cfHie__htIiWzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626168609</pqid></control><display><type>article</type><title>Online monitoring of process variance drifts for leptokurtic and heavy‐tailed data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tan, Wushuang ; Liu, Liu</creator><creatorcontrib>Tan, Wushuang ; Liu, Liu</creatorcontrib><description>In many applications, monitoring the variance of a process online is very important. For example, in industrial and medical fields and weather and ocean research, monitoring the variance drift in processes can effectively reduce losses. This monitoring is especially important in finance because data tend to have leptokurtic and heavy‐tailed characteristics and there are few control charts for the online monitoring of variance drifts. Therefore, we develop a new exponentially weighted moving average control chart based on the sample quantiles of all pairwise differences: the Qnα$Q_n^\alpha$ EWMA control chart. This control chart shows a good performance in the online monitoring of variance drifts when the distribution is leptokurtic and heavy‐tailed, as is the case with the Student's t‐distribution, the Pareto distribution, and the generalized error distribution. To visually explain the Qnα$Q_n^\alpha$ EWMA control chart for monitoring the effect of variance drifts, we compare the monitoring efficiency of the Qnα$Q_n^\alpha$ EWMA control chart with that of two other control charts (the MDEWMA control chart and the GVA control chart) using Monte Carlo simulations and the RMI. The results show that the Qnα$Q_n^\alpha$ EWMA control chart is the most effective for monitoring the variance drifts of data with leptokurtic and heavy‐tailed distributions. Additionally, we use these three control charts to monitor the variance drifts of the weekly return rate of gold (data from Yahoo Finance) to illustrate the application of the Qnα$Q_n^\alpha$ EWMA control chart in practical cases.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3033</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control charts ; Drift ; EWMA control chart ; Finance ; generalized error distribution ; leptokurtic and heavy‐tailed distribution ; Medical research ; Monitoring ; pairwise differences ; pareto distribution ; Quantiles ; Student's t‐distribution</subject><ispartof>Quality and reliability engineering international, 2022-03, Vol.38 (2), p.1045-1059</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2543-96d13873ef7e5658a4781aa500ece2a8368b159917352791c4216779f513e0983</cites><orcidid>0000-0002-4792-0264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tan, Wushuang</creatorcontrib><creatorcontrib>Liu, Liu</creatorcontrib><title>Online monitoring of process variance drifts for leptokurtic and heavy‐tailed data</title><title>Quality and reliability engineering international</title><description>In many applications, monitoring the variance of a process online is very important. For example, in industrial and medical fields and weather and ocean research, monitoring the variance drift in processes can effectively reduce losses. This monitoring is especially important in finance because data tend to have leptokurtic and heavy‐tailed characteristics and there are few control charts for the online monitoring of variance drifts. Therefore, we develop a new exponentially weighted moving average control chart based on the sample quantiles of all pairwise differences: the Qnα$Q_n^\alpha$ EWMA control chart. This control chart shows a good performance in the online monitoring of variance drifts when the distribution is leptokurtic and heavy‐tailed, as is the case with the Student's t‐distribution, the Pareto distribution, and the generalized error distribution. To visually explain the Qnα$Q_n^\alpha$ EWMA control chart for monitoring the effect of variance drifts, we compare the monitoring efficiency of the Qnα$Q_n^\alpha$ EWMA control chart with that of two other control charts (the MDEWMA control chart and the GVA control chart) using Monte Carlo simulations and the RMI. The results show that the Qnα$Q_n^\alpha$ EWMA control chart is the most effective for monitoring the variance drifts of data with leptokurtic and heavy‐tailed distributions. Additionally, we use these three control charts to monitor the variance drifts of the weekly return rate of gold (data from Yahoo Finance) to illustrate the application of the Qnα$Q_n^\alpha$ EWMA control chart in practical cases.</description><subject>Control charts</subject><subject>Drift</subject><subject>EWMA control chart</subject><subject>Finance</subject><subject>generalized error distribution</subject><subject>leptokurtic and heavy‐tailed distribution</subject><subject>Medical research</subject><subject>Monitoring</subject><subject>pairwise differences</subject><subject>pareto distribution</subject><subject>Quantiles</subject><subject>Student's t‐distribution</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYq-AgBN26m5jK5LaXUCxSKUtchzpzR1OmkTaaV7nwEn9EnMVq3rs7m45z__AidUzKihLCrdYQRJ5wfoAElxhRUcn2IBkSVutCEqmN0ktKCkIyNHqD5rGt9B3gZOt-H6LsXHBq8iqGClPDWRe-6CnAdfdMn3ISIW1j14W0Te19h19X4Fdx29_Xx2TvfQo1r17tTdNS4NsHZ3xyip5vJfHxXTGe39-PraVExUfLCyJpyrTg0CoQU2pVKU-cEIVABc5pL_UyFMVRxwZShVcmoVMo0gnLI6fkQXez35rzrDaTeLsImdvmkZZJJKrUkJqvLvapiSClCY1fRL13cWUrsT2c2d2Z_Osu02NP3_MvuX2cfHie__htIiWzo</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Tan, Wushuang</creator><creator>Liu, Liu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-4792-0264</orcidid></search><sort><creationdate>202203</creationdate><title>Online monitoring of process variance drifts for leptokurtic and heavy‐tailed data</title><author>Tan, Wushuang ; Liu, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2543-96d13873ef7e5658a4781aa500ece2a8368b159917352791c4216779f513e0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control charts</topic><topic>Drift</topic><topic>EWMA control chart</topic><topic>Finance</topic><topic>generalized error distribution</topic><topic>leptokurtic and heavy‐tailed distribution</topic><topic>Medical research</topic><topic>Monitoring</topic><topic>pairwise differences</topic><topic>pareto distribution</topic><topic>Quantiles</topic><topic>Student's t‐distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Wushuang</creatorcontrib><creatorcontrib>Liu, Liu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Wushuang</au><au>Liu, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online monitoring of process variance drifts for leptokurtic and heavy‐tailed data</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2022-03</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>1045</spage><epage>1059</epage><pages>1045-1059</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>In many applications, monitoring the variance of a process online is very important. For example, in industrial and medical fields and weather and ocean research, monitoring the variance drift in processes can effectively reduce losses. This monitoring is especially important in finance because data tend to have leptokurtic and heavy‐tailed characteristics and there are few control charts for the online monitoring of variance drifts. Therefore, we develop a new exponentially weighted moving average control chart based on the sample quantiles of all pairwise differences: the Qnα$Q_n^\alpha$ EWMA control chart. This control chart shows a good performance in the online monitoring of variance drifts when the distribution is leptokurtic and heavy‐tailed, as is the case with the Student's t‐distribution, the Pareto distribution, and the generalized error distribution. To visually explain the Qnα$Q_n^\alpha$ EWMA control chart for monitoring the effect of variance drifts, we compare the monitoring efficiency of the Qnα$Q_n^\alpha$ EWMA control chart with that of two other control charts (the MDEWMA control chart and the GVA control chart) using Monte Carlo simulations and the RMI. The results show that the Qnα$Q_n^\alpha$ EWMA control chart is the most effective for monitoring the variance drifts of data with leptokurtic and heavy‐tailed distributions. Additionally, we use these three control charts to monitor the variance drifts of the weekly return rate of gold (data from Yahoo Finance) to illustrate the application of the Qnα$Q_n^\alpha$ EWMA control chart in practical cases.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3033</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4792-0264</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2022-03, Vol.38 (2), p.1045-1059 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2626168609 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Control charts Drift EWMA control chart Finance generalized error distribution leptokurtic and heavy‐tailed distribution Medical research Monitoring pairwise differences pareto distribution Quantiles Student's t‐distribution |
title | Online monitoring of process variance drifts for leptokurtic and heavy‐tailed data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20monitoring%20of%20process%20variance%20drifts%20for%20leptokurtic%20and%20heavy%E2%80%90tailed%20data&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Tan,%20Wushuang&rft.date=2022-03&rft.volume=38&rft.issue=2&rft.spage=1045&rft.epage=1059&rft.pages=1045-1059&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3033&rft_dat=%3Cproquest_cross%3E2626168609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626168609&rft_id=info:pmid/&rfr_iscdi=true |