Crystal engineering and physicochemical properties of l-cysteine cadmium chloride (LCC) for frequency-doubling and optical limiting applications

Adapting the solution growth method, l -cysteine cadmium chloride (LCC) crystal was synthesized, and by using a single-crystal X-ray diffraction analysis, orthorhombic system was confirmed. From the powder XRD pattern, the crystalline nature of LCC crystal was revealed. With the help of FTIR spectro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2022, Vol.33 (3), p.1489-1502
Hauptverfasser: Allen Moses, S. E., Johnson, J., Nagaraju, P., Raghu, Y., Shanmugavalli, R., Gunaseelan, R., Vinoth, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1502
container_issue 3
container_start_page 1489
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Allen Moses, S. E.
Johnson, J.
Nagaraju, P.
Raghu, Y.
Shanmugavalli, R.
Gunaseelan, R.
Vinoth, E.
description Adapting the solution growth method, l -cysteine cadmium chloride (LCC) crystal was synthesized, and by using a single-crystal X-ray diffraction analysis, orthorhombic system was confirmed. From the powder XRD pattern, the crystalline nature of LCC crystal was revealed. With the help of FTIR spectroscopy, various functional groups present in the LCC crystal were identified. The UV–Vis-NIR spectroscopy analysis indicates a lower cutoff wavelength of 244 nm with an optical band gap of 3.77 eV. The linear optical properties such as optical conductivity (σ opt ) and electric susceptibility (χ e ) are also evaluated. By conducting the test of mechanical analysis, the hard nature of the LCC crystal was identified. A higher thermal withstand capacity of 392 °C was determined using TG/DT analysis. During the process, the high-energy-laser withstand capacity of the material was analyzed by a laser damage threshold analysis and it was found to be 6.87 GW/cm 2 . Kurtz and Perry's method was used to measure the SHG efficiency and observed to be 2.32 times higher than KDP. The negative nonlinear refractive index of the LCC crystal was confirmed by Z-scan experiment and the nonlinear refractive index ( n 2  = 2.73 × 10 –11  m 3 /W), nonlinear absorption coefficient (β = 6.111 × 10 –5  m/W), third-order nonlinear optical susceptibility (χ 3  = 1.229 × 10 –9 esu). The optical limiting performance of the LCC crystal displays a linear variation output for varying input laser power in low intensities and the optical limiting threshold value was found to be 46.9 mW. Etching analysis confirms the dislocation growth mechanism of the grown LCC crystal.
doi_str_mv 10.1007/s10854-021-07659-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626113344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626113344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8f9f9f5c3a822805f0181720df01545f457d11735e6978c9782cd1b232d50d473</originalsourceid><addsrcrecordid>eNp9kE1PwyAYx4nRxDn9Ap5IvOgB5bXQo2l8S5Z40cQb6YBuLG2p0B36LfzIsk3jzRACeXh-f-AHwCXBtwRjeZcIVoIjTAnCshAlUkdgRoRkiCv6cQxmuBQScUHpKThLaYMxLjhTM_BVxSmNdQtdv_K9c9H3K1j3Fg7rKXkTzNp13uTzIYbBxdG7BEMDW2Qy5jIBTW07v-2gWbcheuvg9aKqbmATImyi-9y63kzIhu2y_Y0Ow7iPbH3nx31xGNpcGX3o0zk4aeo2uYufdQ7eHx_eqme0eH16qe4XyDBSjkg1ZR7CsFpRqrBoMFFEUmzzRnDRcCEtIZIJV5RSmTypsWRJGbUCWy7ZHFwdcvPH8iPTqDdhG_t8paYFLQhhjPPcRQ9dJoaUomv0EH1Xx0kTrHfm9cG8zub13rxWGWIHKA07nS7-Rf9DfQM8NIhx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626113344</pqid></control><display><type>article</type><title>Crystal engineering and physicochemical properties of l-cysteine cadmium chloride (LCC) for frequency-doubling and optical limiting applications</title><source>Springer journals</source><creator>Allen Moses, S. E. ; Johnson, J. ; Nagaraju, P. ; Raghu, Y. ; Shanmugavalli, R. ; Gunaseelan, R. ; Vinoth, E.</creator><creatorcontrib>Allen Moses, S. E. ; Johnson, J. ; Nagaraju, P. ; Raghu, Y. ; Shanmugavalli, R. ; Gunaseelan, R. ; Vinoth, E.</creatorcontrib><description>Adapting the solution growth method, l -cysteine cadmium chloride (LCC) crystal was synthesized, and by using a single-crystal X-ray diffraction analysis, orthorhombic system was confirmed. From the powder XRD pattern, the crystalline nature of LCC crystal was revealed. With the help of FTIR spectroscopy, various functional groups present in the LCC crystal were identified. The UV–Vis-NIR spectroscopy analysis indicates a lower cutoff wavelength of 244 nm with an optical band gap of 3.77 eV. The linear optical properties such as optical conductivity (σ opt ) and electric susceptibility (χ e ) are also evaluated. By conducting the test of mechanical analysis, the hard nature of the LCC crystal was identified. A higher thermal withstand capacity of 392 °C was determined using TG/DT analysis. During the process, the high-energy-laser withstand capacity of the material was analyzed by a laser damage threshold analysis and it was found to be 6.87 GW/cm 2 . Kurtz and Perry's method was used to measure the SHG efficiency and observed to be 2.32 times higher than KDP. The negative nonlinear refractive index of the LCC crystal was confirmed by Z-scan experiment and the nonlinear refractive index ( n 2  = 2.73 × 10 –11  m 3 /W), nonlinear absorption coefficient (β = 6.111 × 10 –5  m/W), third-order nonlinear optical susceptibility (χ 3  = 1.229 × 10 –9 esu). The optical limiting performance of the LCC crystal displays a linear variation output for varying input laser power in low intensities and the optical limiting threshold value was found to be 46.9 mW. Etching analysis confirms the dislocation growth mechanism of the grown LCC crystal.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07659-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorptivity ; Cadmium chloride ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constraining ; Crystal growth ; Crystals ; Cut off wavelength ; Cysteine ; Diffraction patterns ; Functional groups ; Laser damage ; Lasers ; Materials Science ; Mechanical analysis ; Optical and Electronic Materials ; Optical properties ; Refractivity ; Single crystals ; Spectrum analysis ; Yield point</subject><ispartof>Journal of materials science. Materials in electronics, 2022, Vol.33 (3), p.1489-1502</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8f9f9f5c3a822805f0181720df01545f457d11735e6978c9782cd1b232d50d473</citedby><cites>FETCH-LOGICAL-c319t-8f9f9f5c3a822805f0181720df01545f457d11735e6978c9782cd1b232d50d473</cites><orcidid>0000-0002-3586-9473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-07659-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-07659-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Allen Moses, S. E.</creatorcontrib><creatorcontrib>Johnson, J.</creatorcontrib><creatorcontrib>Nagaraju, P.</creatorcontrib><creatorcontrib>Raghu, Y.</creatorcontrib><creatorcontrib>Shanmugavalli, R.</creatorcontrib><creatorcontrib>Gunaseelan, R.</creatorcontrib><creatorcontrib>Vinoth, E.</creatorcontrib><title>Crystal engineering and physicochemical properties of l-cysteine cadmium chloride (LCC) for frequency-doubling and optical limiting applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Adapting the solution growth method, l -cysteine cadmium chloride (LCC) crystal was synthesized, and by using a single-crystal X-ray diffraction analysis, orthorhombic system was confirmed. From the powder XRD pattern, the crystalline nature of LCC crystal was revealed. With the help of FTIR spectroscopy, various functional groups present in the LCC crystal were identified. The UV–Vis-NIR spectroscopy analysis indicates a lower cutoff wavelength of 244 nm with an optical band gap of 3.77 eV. The linear optical properties such as optical conductivity (σ opt ) and electric susceptibility (χ e ) are also evaluated. By conducting the test of mechanical analysis, the hard nature of the LCC crystal was identified. A higher thermal withstand capacity of 392 °C was determined using TG/DT analysis. During the process, the high-energy-laser withstand capacity of the material was analyzed by a laser damage threshold analysis and it was found to be 6.87 GW/cm 2 . Kurtz and Perry's method was used to measure the SHG efficiency and observed to be 2.32 times higher than KDP. The negative nonlinear refractive index of the LCC crystal was confirmed by Z-scan experiment and the nonlinear refractive index ( n 2  = 2.73 × 10 –11  m 3 /W), nonlinear absorption coefficient (β = 6.111 × 10 –5  m/W), third-order nonlinear optical susceptibility (χ 3  = 1.229 × 10 –9 esu). The optical limiting performance of the LCC crystal displays a linear variation output for varying input laser power in low intensities and the optical limiting threshold value was found to be 46.9 mW. Etching analysis confirms the dislocation growth mechanism of the grown LCC crystal.</description><subject>Absorptivity</subject><subject>Cadmium chloride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constraining</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Cut off wavelength</subject><subject>Cysteine</subject><subject>Diffraction patterns</subject><subject>Functional groups</subject><subject>Laser damage</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mechanical analysis</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Refractivity</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>Yield point</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1PwyAYx4nRxDn9Ap5IvOgB5bXQo2l8S5Z40cQb6YBuLG2p0B36LfzIsk3jzRACeXh-f-AHwCXBtwRjeZcIVoIjTAnCshAlUkdgRoRkiCv6cQxmuBQScUHpKThLaYMxLjhTM_BVxSmNdQtdv_K9c9H3K1j3Fg7rKXkTzNp13uTzIYbBxdG7BEMDW2Qy5jIBTW07v-2gWbcheuvg9aKqbmATImyi-9y63kzIhu2y_Y0Ow7iPbH3nx31xGNpcGX3o0zk4aeo2uYufdQ7eHx_eqme0eH16qe4XyDBSjkg1ZR7CsFpRqrBoMFFEUmzzRnDRcCEtIZIJV5RSmTypsWRJGbUCWy7ZHFwdcvPH8iPTqDdhG_t8paYFLQhhjPPcRQ9dJoaUomv0EH1Xx0kTrHfm9cG8zub13rxWGWIHKA07nS7-Rf9DfQM8NIhx</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Allen Moses, S. E.</creator><creator>Johnson, J.</creator><creator>Nagaraju, P.</creator><creator>Raghu, Y.</creator><creator>Shanmugavalli, R.</creator><creator>Gunaseelan, R.</creator><creator>Vinoth, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-3586-9473</orcidid></search><sort><creationdate>2022</creationdate><title>Crystal engineering and physicochemical properties of l-cysteine cadmium chloride (LCC) for frequency-doubling and optical limiting applications</title><author>Allen Moses, S. E. ; Johnson, J. ; Nagaraju, P. ; Raghu, Y. ; Shanmugavalli, R. ; Gunaseelan, R. ; Vinoth, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8f9f9f5c3a822805f0181720df01545f457d11735e6978c9782cd1b232d50d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorptivity</topic><topic>Cadmium chloride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constraining</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Cut off wavelength</topic><topic>Cysteine</topic><topic>Diffraction patterns</topic><topic>Functional groups</topic><topic>Laser damage</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mechanical analysis</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Refractivity</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>Yield point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen Moses, S. E.</creatorcontrib><creatorcontrib>Johnson, J.</creatorcontrib><creatorcontrib>Nagaraju, P.</creatorcontrib><creatorcontrib>Raghu, Y.</creatorcontrib><creatorcontrib>Shanmugavalli, R.</creatorcontrib><creatorcontrib>Gunaseelan, R.</creatorcontrib><creatorcontrib>Vinoth, E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen Moses, S. E.</au><au>Johnson, J.</au><au>Nagaraju, P.</au><au>Raghu, Y.</au><au>Shanmugavalli, R.</au><au>Gunaseelan, R.</au><au>Vinoth, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal engineering and physicochemical properties of l-cysteine cadmium chloride (LCC) for frequency-doubling and optical limiting applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022</date><risdate>2022</risdate><volume>33</volume><issue>3</issue><spage>1489</spage><epage>1502</epage><pages>1489-1502</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Adapting the solution growth method, l -cysteine cadmium chloride (LCC) crystal was synthesized, and by using a single-crystal X-ray diffraction analysis, orthorhombic system was confirmed. From the powder XRD pattern, the crystalline nature of LCC crystal was revealed. With the help of FTIR spectroscopy, various functional groups present in the LCC crystal were identified. The UV–Vis-NIR spectroscopy analysis indicates a lower cutoff wavelength of 244 nm with an optical band gap of 3.77 eV. The linear optical properties such as optical conductivity (σ opt ) and electric susceptibility (χ e ) are also evaluated. By conducting the test of mechanical analysis, the hard nature of the LCC crystal was identified. A higher thermal withstand capacity of 392 °C was determined using TG/DT analysis. During the process, the high-energy-laser withstand capacity of the material was analyzed by a laser damage threshold analysis and it was found to be 6.87 GW/cm 2 . Kurtz and Perry's method was used to measure the SHG efficiency and observed to be 2.32 times higher than KDP. The negative nonlinear refractive index of the LCC crystal was confirmed by Z-scan experiment and the nonlinear refractive index ( n 2  = 2.73 × 10 –11  m 3 /W), nonlinear absorption coefficient (β = 6.111 × 10 –5  m/W), third-order nonlinear optical susceptibility (χ 3  = 1.229 × 10 –9 esu). The optical limiting performance of the LCC crystal displays a linear variation output for varying input laser power in low intensities and the optical limiting threshold value was found to be 46.9 mW. Etching analysis confirms the dislocation growth mechanism of the grown LCC crystal.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07659-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3586-9473</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022, Vol.33 (3), p.1489-1502
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2626113344
source Springer journals
subjects Absorptivity
Cadmium chloride
Characterization and Evaluation of Materials
Chemistry and Materials Science
Constraining
Crystal growth
Crystals
Cut off wavelength
Cysteine
Diffraction patterns
Functional groups
Laser damage
Lasers
Materials Science
Mechanical analysis
Optical and Electronic Materials
Optical properties
Refractivity
Single crystals
Spectrum analysis
Yield point
title Crystal engineering and physicochemical properties of l-cysteine cadmium chloride (LCC) for frequency-doubling and optical limiting applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20engineering%20and%20physicochemical%20properties%20of%20l-cysteine%20cadmium%20chloride%20(LCC)%20for%20frequency-doubling%20and%20optical%20limiting%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Allen%20Moses,%20S.%20E.&rft.date=2022&rft.volume=33&rft.issue=3&rft.spage=1489&rft.epage=1502&rft.pages=1489-1502&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07659-8&rft_dat=%3Cproquest_cross%3E2626113344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626113344&rft_id=info:pmid/&rfr_iscdi=true