Global dynamics and traveling wave solutions for a three‐species model

In this work, we investigate the system of a three‐species ecological model involving one predator–prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding reaction equations are proved analytically for all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2022-03, Vol.45 (4), p.2380-2397
Hauptverfasser: Li, Fanfan, Han, Zhenlai, Yang, Ting‐Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2397
container_issue 4
container_start_page 2380
container_title Mathematical methods in the applied sciences
container_volume 45
creator Li, Fanfan
Han, Zhenlai
Yang, Ting‐Hui
description In this work, we investigate the system of a three‐species ecological model involving one predator–prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding reaction equations are proved analytically for all classified parameters. With diffusive terms, the transitions of different spatial homogeneous solutions, the existence of traveling wave solutions, are investigated by a higher dimensional shooting method, the Wazewski method. These mathematical results, under mild conditions, imply that a generalist predator can stabilize a predator–prey system even with negative effects of coupling. Finally, some biological implications are given and the interesting numerical simulations are performed.
doi_str_mv 10.1002/mma.7934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2626096615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626096615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1844-22579ac3f9e75767dde291ae84a72598dbb0a0b24065f4b06f311887b74699eb3</originalsourceid><addsrcrecordid>eNp10LFOwzAQgGELgUQpSDyCJRaWlLPj2PFYVdAitWKB2bKTC6RK4mKnVN14BJ6RJyGlrEx3w6c76SfkmsGEAfC7trUTpVNxQkYMtE6YUPKUjIApSARn4pxcxLgGgJwxPiKLeeOdbWi572xbF5HarqR9sB_Y1N0r3Q0Ljb7Z9rXvIq18oJb2bwHx-_MrbrCoMdLWl9hckrPKNhGv_uaYvDzcP88WyfJp_jibLpOC5UIknGdK2yKtNKpMSVWWyDWzmAureKbz0jmw4LgAmVXCgaxSxvJcOSWk1ujSMbk53t0E_77F2Ju134ZueGm45BK0lCwb1O1RFcHHGLAym1C3NuwNA3PoZIZO5tBpoMmR7uoG9_86s1pNf_0Pd-BpGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626096615</pqid></control><display><type>article</type><title>Global dynamics and traveling wave solutions for a three‐species model</title><source>Access via Wiley Online Library</source><creator>Li, Fanfan ; Han, Zhenlai ; Yang, Ting‐Hui</creator><creatorcontrib>Li, Fanfan ; Han, Zhenlai ; Yang, Ting‐Hui</creatorcontrib><description>In this work, we investigate the system of a three‐species ecological model involving one predator–prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding reaction equations are proved analytically for all classified parameters. With diffusive terms, the transitions of different spatial homogeneous solutions, the existence of traveling wave solutions, are investigated by a higher dimensional shooting method, the Wazewski method. These mathematical results, under mild conditions, imply that a generalist predator can stabilize a predator–prey system even with negative effects of coupling. Finally, some biological implications are given and the interesting numerical simulations are performed.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7934</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Coupling ; Ecological models ; global asymptotically stability ; Mathematical models ; Predator-prey simulation ; Predators ; Subsystems ; traveling wave solutions ; Traveling waves ; two predators–one prey system ; Wazewski principle</subject><ispartof>Mathematical methods in the applied sciences, 2022-03, Vol.45 (4), p.2380-2397</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1844-22579ac3f9e75767dde291ae84a72598dbb0a0b24065f4b06f311887b74699eb3</cites><orcidid>0000-0003-2079-2597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7934$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7934$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Fanfan</creatorcontrib><creatorcontrib>Han, Zhenlai</creatorcontrib><creatorcontrib>Yang, Ting‐Hui</creatorcontrib><title>Global dynamics and traveling wave solutions for a three‐species model</title><title>Mathematical methods in the applied sciences</title><description>In this work, we investigate the system of a three‐species ecological model involving one predator–prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding reaction equations are proved analytically for all classified parameters. With diffusive terms, the transitions of different spatial homogeneous solutions, the existence of traveling wave solutions, are investigated by a higher dimensional shooting method, the Wazewski method. These mathematical results, under mild conditions, imply that a generalist predator can stabilize a predator–prey system even with negative effects of coupling. Finally, some biological implications are given and the interesting numerical simulations are performed.</description><subject>Coupling</subject><subject>Ecological models</subject><subject>global asymptotically stability</subject><subject>Mathematical models</subject><subject>Predator-prey simulation</subject><subject>Predators</subject><subject>Subsystems</subject><subject>traveling wave solutions</subject><subject>Traveling waves</subject><subject>two predators–one prey system</subject><subject>Wazewski principle</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQgGELgUQpSDyCJRaWlLPj2PFYVdAitWKB2bKTC6RK4mKnVN14BJ6RJyGlrEx3w6c76SfkmsGEAfC7trUTpVNxQkYMtE6YUPKUjIApSARn4pxcxLgGgJwxPiKLeeOdbWi572xbF5HarqR9sB_Y1N0r3Q0Ljb7Z9rXvIq18oJb2bwHx-_MrbrCoMdLWl9hckrPKNhGv_uaYvDzcP88WyfJp_jibLpOC5UIknGdK2yKtNKpMSVWWyDWzmAureKbz0jmw4LgAmVXCgaxSxvJcOSWk1ujSMbk53t0E_77F2Ju134ZueGm45BK0lCwb1O1RFcHHGLAym1C3NuwNA3PoZIZO5tBpoMmR7uoG9_86s1pNf_0Pd-BpGQ</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Li, Fanfan</creator><creator>Han, Zhenlai</creator><creator>Yang, Ting‐Hui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2079-2597</orcidid></search><sort><creationdate>20220315</creationdate><title>Global dynamics and traveling wave solutions for a three‐species model</title><author>Li, Fanfan ; Han, Zhenlai ; Yang, Ting‐Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1844-22579ac3f9e75767dde291ae84a72598dbb0a0b24065f4b06f311887b74699eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coupling</topic><topic>Ecological models</topic><topic>global asymptotically stability</topic><topic>Mathematical models</topic><topic>Predator-prey simulation</topic><topic>Predators</topic><topic>Subsystems</topic><topic>traveling wave solutions</topic><topic>Traveling waves</topic><topic>two predators–one prey system</topic><topic>Wazewski principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fanfan</creatorcontrib><creatorcontrib>Han, Zhenlai</creatorcontrib><creatorcontrib>Yang, Ting‐Hui</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fanfan</au><au>Han, Zhenlai</au><au>Yang, Ting‐Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global dynamics and traveling wave solutions for a three‐species model</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>45</volume><issue>4</issue><spage>2380</spage><epage>2397</epage><pages>2380-2397</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this work, we investigate the system of a three‐species ecological model involving one predator–prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding reaction equations are proved analytically for all classified parameters. With diffusive terms, the transitions of different spatial homogeneous solutions, the existence of traveling wave solutions, are investigated by a higher dimensional shooting method, the Wazewski method. These mathematical results, under mild conditions, imply that a generalist predator can stabilize a predator–prey system even with negative effects of coupling. Finally, some biological implications are given and the interesting numerical simulations are performed.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7934</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2079-2597</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2022-03, Vol.45 (4), p.2380-2397
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2626096615
source Access via Wiley Online Library
subjects Coupling
Ecological models
global asymptotically stability
Mathematical models
Predator-prey simulation
Predators
Subsystems
traveling wave solutions
Traveling waves
two predators–one prey system
Wazewski principle
title Global dynamics and traveling wave solutions for a three‐species model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20dynamics%20and%20traveling%20wave%20solutions%20for%20a%20three%E2%80%90species%20model&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Li,%20Fanfan&rft.date=2022-03-15&rft.volume=45&rft.issue=4&rft.spage=2380&rft.epage=2397&rft.pages=2380-2397&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7934&rft_dat=%3Cproquest_cross%3E2626096615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626096615&rft_id=info:pmid/&rfr_iscdi=true