On the Influence of Alloy Composition on the Additive Manufacturability of Ni-Based Superalloys
The susceptibility of nickel-based superalloys to processing-induced crack formation during laser powder-bed additive manufacturing is studied. Twelve different alloys—some of existing (heritage) type but also other newly-designed ones—are considered. A strong inter-dependence of alloy composition a...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2022-03, Vol.53 (3), p.962-983 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 983 |
---|---|
container_issue | 3 |
container_start_page | 962 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 53 |
creator | Ghoussoub, Joseph N. Tang, Yuanbo T. Dick-Cleland, William J. B. Németh, André A. N. Gong, Yilun McCartney, D. Graham Cocks, Alan C. F. Reed, Roger C. |
description | The susceptibility of nickel-based superalloys to processing-induced crack formation during laser powder-bed additive manufacturing is studied. Twelve different alloys—some of existing (heritage) type but also other newly-designed ones—are considered. A strong inter-dependence of alloy composition and processability is demonstrated. Stereological procedures are developed to enable the two dominant defect types found—solidification cracks and solid-state ductility dip cracks—to be distinguished and quantified. Differential scanning calorimetry, creep stress relaxation tests at 1000 °C and measurements of tensile ductility at 800 °C are used to interpret the effects of alloy composition. A model for solid-state cracking is proposed, based on an incapacity to relax the thermal stress arising from constrained differential thermal contraction; its development is supported by experimental measurements using a constrained bar cooling test. A modified solidification cracking criterion is proposed based upon solidification range but including also a contribution from the stress relaxation effect. This work provides fundamental insights into the role of composition on the additive manufacturability of these materials. |
doi_str_mv | 10.1007/s11661-021-06568-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625924777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625924777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-99522c0cd6672d8b22f14506076bd7de45879404b8ef3de3ade1ec21c41acd253</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4EdvJslQ8KhW6ANaWYzuQKo2DnSClX49LkNixGM2MdO8dzQHgkuBrgrG8iYQIQRCmqQQXOdofgRnhGUOkyPBxmrFkiAvKTsFZjFuMMSmYmAG1aWH_4eCqrZrBtcZBX8FF0_gRLv2u87Hua99CP6kW1qb9y8En3Q6VNv0QdFk3dT8ebM81utXRWfgydC7oQ0g8ByeVbqK7-O1z8HZ_97p8ROvNw2q5WCPDBOtRUXBKDTZWCEltXlJakYxjgaUorbQu47lMj2Rl7ipmHdPWEWcoMRnRxlLO5uBqyu2C_xxc7NXWD6FNJxUVlBc0k1ImFZ1UJvgYg6tUF-qdDqMiWB1AqgmkSiDVD0i1TyY2mWISt-8u_EX_4_oG1Rh21w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625924777</pqid></control><display><type>article</type><title>On the Influence of Alloy Composition on the Additive Manufacturability of Ni-Based Superalloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ghoussoub, Joseph N. ; Tang, Yuanbo T. ; Dick-Cleland, William J. B. ; Németh, André A. N. ; Gong, Yilun ; McCartney, D. Graham ; Cocks, Alan C. F. ; Reed, Roger C.</creator><creatorcontrib>Ghoussoub, Joseph N. ; Tang, Yuanbo T. ; Dick-Cleland, William J. B. ; Németh, André A. N. ; Gong, Yilun ; McCartney, D. Graham ; Cocks, Alan C. F. ; Reed, Roger C.</creatorcontrib><description>The susceptibility of nickel-based superalloys to processing-induced crack formation during laser powder-bed additive manufacturing is studied. Twelve different alloys—some of existing (heritage) type but also other newly-designed ones—are considered. A strong inter-dependence of alloy composition and processability is demonstrated. Stereological procedures are developed to enable the two dominant defect types found—solidification cracks and solid-state ductility dip cracks—to be distinguished and quantified. Differential scanning calorimetry, creep stress relaxation tests at 1000 °C and measurements of tensile ductility at 800 °C are used to interpret the effects of alloy composition. A model for solid-state cracking is proposed, based on an incapacity to relax the thermal stress arising from constrained differential thermal contraction; its development is supported by experimental measurements using a constrained bar cooling test. A modified solidification cracking criterion is proposed based upon solidification range but including also a contribution from the stress relaxation effect. This work provides fundamental insights into the role of composition on the additive manufacturability of these materials.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06568-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composition effects ; Cracks ; Creep (materials) ; Differential thermal analysis ; Ductility ; Ductility tests ; Manufacturability ; Materials Science ; Metallic Materials ; Nanotechnology ; Nickel ; Nickel base alloys ; Original Research Article ; Solid state ; Solidification ; Stress relaxation ; Stress relaxation tests ; Structural Materials ; Superalloys ; Surfaces and Interfaces ; Thermal contraction ; Thermal stress ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-03, Vol.53 (3), p.962-983</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-99522c0cd6672d8b22f14506076bd7de45879404b8ef3de3ade1ec21c41acd253</citedby><cites>FETCH-LOGICAL-c363t-99522c0cd6672d8b22f14506076bd7de45879404b8ef3de3ade1ec21c41acd253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-021-06568-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-021-06568-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ghoussoub, Joseph N.</creatorcontrib><creatorcontrib>Tang, Yuanbo T.</creatorcontrib><creatorcontrib>Dick-Cleland, William J. B.</creatorcontrib><creatorcontrib>Németh, André A. N.</creatorcontrib><creatorcontrib>Gong, Yilun</creatorcontrib><creatorcontrib>McCartney, D. Graham</creatorcontrib><creatorcontrib>Cocks, Alan C. F.</creatorcontrib><creatorcontrib>Reed, Roger C.</creatorcontrib><title>On the Influence of Alloy Composition on the Additive Manufacturability of Ni-Based Superalloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The susceptibility of nickel-based superalloys to processing-induced crack formation during laser powder-bed additive manufacturing is studied. Twelve different alloys—some of existing (heritage) type but also other newly-designed ones—are considered. A strong inter-dependence of alloy composition and processability is demonstrated. Stereological procedures are developed to enable the two dominant defect types found—solidification cracks and solid-state ductility dip cracks—to be distinguished and quantified. Differential scanning calorimetry, creep stress relaxation tests at 1000 °C and measurements of tensile ductility at 800 °C are used to interpret the effects of alloy composition. A model for solid-state cracking is proposed, based on an incapacity to relax the thermal stress arising from constrained differential thermal contraction; its development is supported by experimental measurements using a constrained bar cooling test. A modified solidification cracking criterion is proposed based upon solidification range but including also a contribution from the stress relaxation effect. This work provides fundamental insights into the role of composition on the additive manufacturability of these materials.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composition effects</subject><subject>Cracks</subject><subject>Creep (materials)</subject><subject>Differential thermal analysis</subject><subject>Ductility</subject><subject>Ductility tests</subject><subject>Manufacturability</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Original Research Article</subject><subject>Solid state</subject><subject>Solidification</subject><subject>Stress relaxation</subject><subject>Stress relaxation tests</subject><subject>Structural Materials</subject><subject>Superalloys</subject><subject>Surfaces and Interfaces</subject><subject>Thermal contraction</subject><subject>Thermal stress</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4EdvJslQ8KhW6ANaWYzuQKo2DnSClX49LkNixGM2MdO8dzQHgkuBrgrG8iYQIQRCmqQQXOdofgRnhGUOkyPBxmrFkiAvKTsFZjFuMMSmYmAG1aWH_4eCqrZrBtcZBX8FF0_gRLv2u87Hua99CP6kW1qb9y8En3Q6VNv0QdFk3dT8ebM81utXRWfgydC7oQ0g8ByeVbqK7-O1z8HZ_97p8ROvNw2q5WCPDBOtRUXBKDTZWCEltXlJakYxjgaUorbQu47lMj2Rl7ipmHdPWEWcoMRnRxlLO5uBqyu2C_xxc7NXWD6FNJxUVlBc0k1ImFZ1UJvgYg6tUF-qdDqMiWB1AqgmkSiDVD0i1TyY2mWISt-8u_EX_4_oG1Rh21w</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ghoussoub, Joseph N.</creator><creator>Tang, Yuanbo T.</creator><creator>Dick-Cleland, William J. B.</creator><creator>Németh, André A. N.</creator><creator>Gong, Yilun</creator><creator>McCartney, D. Graham</creator><creator>Cocks, Alan C. F.</creator><creator>Reed, Roger C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20220301</creationdate><title>On the Influence of Alloy Composition on the Additive Manufacturability of Ni-Based Superalloys</title><author>Ghoussoub, Joseph N. ; Tang, Yuanbo T. ; Dick-Cleland, William J. B. ; Németh, André A. N. ; Gong, Yilun ; McCartney, D. Graham ; Cocks, Alan C. F. ; Reed, Roger C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-99522c0cd6672d8b22f14506076bd7de45879404b8ef3de3ade1ec21c41acd253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composition effects</topic><topic>Cracks</topic><topic>Creep (materials)</topic><topic>Differential thermal analysis</topic><topic>Ductility</topic><topic>Ductility tests</topic><topic>Manufacturability</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Original Research Article</topic><topic>Solid state</topic><topic>Solidification</topic><topic>Stress relaxation</topic><topic>Stress relaxation tests</topic><topic>Structural Materials</topic><topic>Superalloys</topic><topic>Surfaces and Interfaces</topic><topic>Thermal contraction</topic><topic>Thermal stress</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghoussoub, Joseph N.</creatorcontrib><creatorcontrib>Tang, Yuanbo T.</creatorcontrib><creatorcontrib>Dick-Cleland, William J. B.</creatorcontrib><creatorcontrib>Németh, André A. N.</creatorcontrib><creatorcontrib>Gong, Yilun</creatorcontrib><creatorcontrib>McCartney, D. Graham</creatorcontrib><creatorcontrib>Cocks, Alan C. F.</creatorcontrib><creatorcontrib>Reed, Roger C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghoussoub, Joseph N.</au><au>Tang, Yuanbo T.</au><au>Dick-Cleland, William J. B.</au><au>Németh, André A. N.</au><au>Gong, Yilun</au><au>McCartney, D. Graham</au><au>Cocks, Alan C. F.</au><au>Reed, Roger C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Influence of Alloy Composition on the Additive Manufacturability of Ni-Based Superalloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>53</volume><issue>3</issue><spage>962</spage><epage>983</epage><pages>962-983</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The susceptibility of nickel-based superalloys to processing-induced crack formation during laser powder-bed additive manufacturing is studied. Twelve different alloys—some of existing (heritage) type but also other newly-designed ones—are considered. A strong inter-dependence of alloy composition and processability is demonstrated. Stereological procedures are developed to enable the two dominant defect types found—solidification cracks and solid-state ductility dip cracks—to be distinguished and quantified. Differential scanning calorimetry, creep stress relaxation tests at 1000 °C and measurements of tensile ductility at 800 °C are used to interpret the effects of alloy composition. A model for solid-state cracking is proposed, based on an incapacity to relax the thermal stress arising from constrained differential thermal contraction; its development is supported by experimental measurements using a constrained bar cooling test. A modified solidification cracking criterion is proposed based upon solidification range but including also a contribution from the stress relaxation effect. This work provides fundamental insights into the role of composition on the additive manufacturability of these materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06568-z</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-03, Vol.53 (3), p.962-983 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2625924777 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Composition effects Cracks Creep (materials) Differential thermal analysis Ductility Ductility tests Manufacturability Materials Science Metallic Materials Nanotechnology Nickel Nickel base alloys Original Research Article Solid state Solidification Stress relaxation Stress relaxation tests Structural Materials Superalloys Surfaces and Interfaces Thermal contraction Thermal stress Thin Films |
title | On the Influence of Alloy Composition on the Additive Manufacturability of Ni-Based Superalloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Influence%20of%20Alloy%20Composition%20on%20the%20Additive%20Manufacturability%20of%20Ni-Based%20Superalloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Ghoussoub,%20Joseph%20N.&rft.date=2022-03-01&rft.volume=53&rft.issue=3&rft.spage=962&rft.epage=983&rft.pages=962-983&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06568-z&rft_dat=%3Cproquest_cross%3E2625924777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625924777&rft_id=info:pmid/&rfr_iscdi=true |