Hybrid Electron Beam Powder Bed Fusion Additive Manufacturing of Ti–6Al–4V: Processing, Microstructure, and Mechanical Properties

Processing, microstructure, and mechanical properties of the hybrid electron beam powder bed fusion (E-PBF) additive manufacturing of Ti–6Al–4V have been investigated. We explore the possibility of integrating the substrate as a part of the final component as a repair, integrated, or consolidated pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2022-03, Vol.53 (3), p.927-941
Hauptverfasser: Tosi, R., Muzangaza, E., Tan, X. P., Wimpenny, D., Attallah, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 3
container_start_page 927
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 53
creator Tosi, R.
Muzangaza, E.
Tan, X. P.
Wimpenny, D.
Attallah, M. M.
description Processing, microstructure, and mechanical properties of the hybrid electron beam powder bed fusion (E-PBF) additive manufacturing of Ti–6Al–4V have been investigated. We explore the possibility of integrating the substrate as a part of the final component as a repair, integrated, or consolidated part. Various starting plate surface conditions are used to understand the joining behavior and their microstructural properties in the bonding region between the plate and initial deposited layers. It is found that mechanical failures mainly occur within the substrate region due to the dominant plastic strains localized in the weaker Ti–6Al–4V substrate. The hybrid concept is successfully proven with satisfactory bonding performance between the E-PBF build and substrate. This investigation improves the practice of using the hybrid E-PBF additive manufacturing technique and provides basic understanding to this approach.
doi_str_mv 10.1007/s11661-021-06565-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625923296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625923296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2001a022d9e933a734b455bcba74afdcd4e4578a762360274ce571dd9696203c3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhiMEEqXwAkyWWBvw3YStoJYitaJDYbUc2wFXaVLsBNSNhSfgDXkSHILExmD7yOf_z-VLklMEzxGE4iIgxDlKIY6HM85SvJcMEKMkRRmF-zGGgqSMY3KYHIWwhhCijPBB8jHb5d4ZMCmtbnxdgWurNmBZvxnrY2zAtA0ufo-NcY17tWChqrZQumm9q55AXYCV-3r_5OMy3vTxCix9rW0IMTkCC6d9HRrfdnI7AqoyYGH1s6qcVmUn3VrfOBuOk4NClcGe_L7D5GE6Wd3M0vn97d3NeJ5qwkmT4ji1ghibzGaEKEFoThnLda4EVYXRhlrKxKUScU8OsaDaMoGMyXjGMSSaDJOzvu7W1y-tDY1c162vYkuJOWYZJjjjUYV7VTd98LaQW-82yu8kgrLDLXvcMuKWP7gljibSm8K2I2P9X-l_XN8UZYSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625923296</pqid></control><display><type>article</type><title>Hybrid Electron Beam Powder Bed Fusion Additive Manufacturing of Ti–6Al–4V: Processing, Microstructure, and Mechanical Properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Tosi, R. ; Muzangaza, E. ; Tan, X. P. ; Wimpenny, D. ; Attallah, M. M.</creator><creatorcontrib>Tosi, R. ; Muzangaza, E. ; Tan, X. P. ; Wimpenny, D. ; Attallah, M. M.</creatorcontrib><description>Processing, microstructure, and mechanical properties of the hybrid electron beam powder bed fusion (E-PBF) additive manufacturing of Ti–6Al–4V have been investigated. We explore the possibility of integrating the substrate as a part of the final component as a repair, integrated, or consolidated part. Various starting plate surface conditions are used to understand the joining behavior and their microstructural properties in the bonding region between the plate and initial deposited layers. It is found that mechanical failures mainly occur within the substrate region due to the dominant plastic strains localized in the weaker Ti–6Al–4V substrate. The hybrid concept is successfully proven with satisfactory bonding performance between the E-PBF build and substrate. This investigation improves the practice of using the hybrid E-PBF additive manufacturing technique and provides basic understanding to this approach.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06565-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Bonding ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electron beams ; Manufacturing ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Nanotechnology ; Original Research Article ; Powder beds ; Structural Materials ; Substrates ; Surfaces and Interfaces ; Thin Films ; Titanium base alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-03, Vol.53 (3), p.927-941</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2001a022d9e933a734b455bcba74afdcd4e4578a762360274ce571dd9696203c3</citedby><cites>FETCH-LOGICAL-c363t-2001a022d9e933a734b455bcba74afdcd4e4578a762360274ce571dd9696203c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-021-06565-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-021-06565-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Tosi, R.</creatorcontrib><creatorcontrib>Muzangaza, E.</creatorcontrib><creatorcontrib>Tan, X. P.</creatorcontrib><creatorcontrib>Wimpenny, D.</creatorcontrib><creatorcontrib>Attallah, M. M.</creatorcontrib><title>Hybrid Electron Beam Powder Bed Fusion Additive Manufacturing of Ti–6Al–4V: Processing, Microstructure, and Mechanical Properties</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Processing, microstructure, and mechanical properties of the hybrid electron beam powder bed fusion (E-PBF) additive manufacturing of Ti–6Al–4V have been investigated. We explore the possibility of integrating the substrate as a part of the final component as a repair, integrated, or consolidated part. Various starting plate surface conditions are used to understand the joining behavior and their microstructural properties in the bonding region between the plate and initial deposited layers. It is found that mechanical failures mainly occur within the substrate region due to the dominant plastic strains localized in the weaker Ti–6Al–4V substrate. The hybrid concept is successfully proven with satisfactory bonding performance between the E-PBF build and substrate. This investigation improves the practice of using the hybrid E-PBF additive manufacturing technique and provides basic understanding to this approach.</description><subject>Additive manufacturing</subject><subject>Bonding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electron beams</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Powder beds</subject><subject>Structural Materials</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOwzAUhiMEEqXwAkyWWBvw3YStoJYitaJDYbUc2wFXaVLsBNSNhSfgDXkSHILExmD7yOf_z-VLklMEzxGE4iIgxDlKIY6HM85SvJcMEKMkRRmF-zGGgqSMY3KYHIWwhhCijPBB8jHb5d4ZMCmtbnxdgWurNmBZvxnrY2zAtA0ufo-NcY17tWChqrZQumm9q55AXYCV-3r_5OMy3vTxCix9rW0IMTkCC6d9HRrfdnI7AqoyYGH1s6qcVmUn3VrfOBuOk4NClcGe_L7D5GE6Wd3M0vn97d3NeJ5qwkmT4ji1ghibzGaEKEFoThnLda4EVYXRhlrKxKUScU8OsaDaMoGMyXjGMSSaDJOzvu7W1y-tDY1c162vYkuJOWYZJjjjUYV7VTd98LaQW-82yu8kgrLDLXvcMuKWP7gljibSm8K2I2P9X-l_XN8UZYSA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Tosi, R.</creator><creator>Muzangaza, E.</creator><creator>Tan, X. P.</creator><creator>Wimpenny, D.</creator><creator>Attallah, M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20220301</creationdate><title>Hybrid Electron Beam Powder Bed Fusion Additive Manufacturing of Ti–6Al–4V: Processing, Microstructure, and Mechanical Properties</title><author>Tosi, R. ; Muzangaza, E. ; Tan, X. P. ; Wimpenny, D. ; Attallah, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2001a022d9e933a734b455bcba74afdcd4e4578a762360274ce571dd9696203c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Bonding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electron beams</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Powder beds</topic><topic>Structural Materials</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tosi, R.</creatorcontrib><creatorcontrib>Muzangaza, E.</creatorcontrib><creatorcontrib>Tan, X. P.</creatorcontrib><creatorcontrib>Wimpenny, D.</creatorcontrib><creatorcontrib>Attallah, M. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tosi, R.</au><au>Muzangaza, E.</au><au>Tan, X. P.</au><au>Wimpenny, D.</au><au>Attallah, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Electron Beam Powder Bed Fusion Additive Manufacturing of Ti–6Al–4V: Processing, Microstructure, and Mechanical Properties</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>53</volume><issue>3</issue><spage>927</spage><epage>941</epage><pages>927-941</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Processing, microstructure, and mechanical properties of the hybrid electron beam powder bed fusion (E-PBF) additive manufacturing of Ti–6Al–4V have been investigated. We explore the possibility of integrating the substrate as a part of the final component as a repair, integrated, or consolidated part. Various starting plate surface conditions are used to understand the joining behavior and their microstructural properties in the bonding region between the plate and initial deposited layers. It is found that mechanical failures mainly occur within the substrate region due to the dominant plastic strains localized in the weaker Ti–6Al–4V substrate. The hybrid concept is successfully proven with satisfactory bonding performance between the E-PBF build and substrate. This investigation improves the practice of using the hybrid E-PBF additive manufacturing technique and provides basic understanding to this approach.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06565-2</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-03, Vol.53 (3), p.927-941
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2625923296
source Springer Nature - Complete Springer Journals
subjects Additive manufacturing
Bonding
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electron beams
Manufacturing
Materials Science
Mechanical properties
Metallic Materials
Microstructure
Nanotechnology
Original Research Article
Powder beds
Structural Materials
Substrates
Surfaces and Interfaces
Thin Films
Titanium base alloys
title Hybrid Electron Beam Powder Bed Fusion Additive Manufacturing of Ti–6Al–4V: Processing, Microstructure, and Mechanical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Electron%20Beam%20Powder%20Bed%20Fusion%20Additive%20Manufacturing%20of%20Ti%E2%80%936Al%E2%80%934V:%20Processing,%20Microstructure,%20and%20Mechanical%20Properties&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Tosi,%20R.&rft.date=2022-03-01&rft.volume=53&rft.issue=3&rft.spage=927&rft.epage=941&rft.pages=927-941&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06565-2&rft_dat=%3Cproquest_cross%3E2625923296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625923296&rft_id=info:pmid/&rfr_iscdi=true