Polarization Problem on a Higher-Dimensional Sphere for a Simplex

We study the problem of maximizing the minimal value over the sphere S d - 1 ⊂ R d of the potential generated by a configuration of d + 1 points on  S d - 1 (the maximal discrete polarization problem). The points interact via the potential given by a function f of the Euclidean distance squared, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2022-03, Vol.67 (2), p.525-542
1. Verfasser: Borodachov, Sergiy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problem of maximizing the minimal value over the sphere S d - 1 ⊂ R d of the potential generated by a configuration of d + 1 points on  S d - 1 (the maximal discrete polarization problem). The points interact via the potential given by a function f of the Euclidean distance squared, where f : [ 0 , 4 ] → ( - ∞ , ∞ ] is continuous (in the extended sense), decreasing on [0, 4], and finite and convex on (0, 4], with a concave or convex derivative  f ′ . We prove that the configuration of the vertices of a regular d -simplex inscribed in S d - 1 is optimal. This result is new for d > 3 (certain special cases for d = 2 and d = 3 are also new). As a byproduct, we find a simpler proof for the known optimal covering property of the vertices of a regular d -simplex inscribed in  S d - 1 .
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-021-00308-1