Polarization Problem on a Higher-Dimensional Sphere for a Simplex
We study the problem of maximizing the minimal value over the sphere S d - 1 ⊂ R d of the potential generated by a configuration of d + 1 points on S d - 1 (the maximal discrete polarization problem). The points interact via the potential given by a function f of the Euclidean distance squared, whe...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2022-03, Vol.67 (2), p.525-542 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problem of maximizing the minimal value over the sphere
S
d
-
1
⊂
R
d
of the potential generated by a configuration of
d
+
1
points on
S
d
-
1
(the maximal discrete polarization problem). The points interact via the potential given by a function
f
of the Euclidean distance squared, where
f
:
[
0
,
4
]
→
(
-
∞
,
∞
]
is continuous (in the extended sense), decreasing on [0, 4], and finite and convex on (0, 4], with a concave or convex derivative
f
′
. We prove that the configuration of the vertices of a regular
d
-simplex inscribed in
S
d
-
1
is optimal. This result is new for
d
>
3
(certain special cases for
d
=
2
and
d
=
3
are also new). As a byproduct, we find a simpler proof for the known optimal covering property of the vertices of a regular
d
-simplex inscribed in
S
d
-
1
. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-021-00308-1 |