Computational implementation of bounding surface model and its verification through cavity benchmark problems
This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the de...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2022-02, Vol.46 (3), p.553-569 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | 3 |
container_start_page | 553 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 46 |
creator | Chen, Shengli Abousleiman, Younane Muraleetharan, Kanthasamy K. |
description | This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, that is, the ratio between the image stress and the current stress quantities. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of cavity contraction (wellbore drilling/tunnel excavation) boundary value problems. The predictions from the ABAQUS simulations are found to be in excellent agreement with the analytical solutions, thus demonstrating the validity and accuracy of the proposed integration scheme. |
doi_str_mv | 10.1002/nag.3311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625472051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625472051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-60483244a434c0a7f83e8d685ad110809afe7f0966f810623f6da62297c0380f3</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqUg8QmWuHBJWduJ4xyrCgpSBRc4W65jty5JXOykqH-PS7hyWmn3aXZmELolMCMA9KFTmxljhJyhCYGKZ5Uo2DmaAOMsq4CTS3QV4w4AinSdoHbh2_3Qq975TjXYtfvGtKYbF9hbvPZDV7tug-MQrNIGt742DVZdjV0f8cEEZ50e8X4b_LDZYq0Orj_iten0tlXhE--DXyfdeI0urGqiufmbU_Tx9Pi-eM5Wb8uXxXyVaVoxknHIBaN5rnKWa1ClFcyImotC1YSAgEpZU9rkn1tBgFNmea04pVWpgQmwbIruRt30-GswsZc7P4QUMErKaZGXFAqSqPuR0sHHGIyV--CS36MkIE9lylSmPJWZ0GxEv11jjv9y8nW-_OV_AI_ydk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625472051</pqid></control><display><type>article</type><title>Computational implementation of bounding surface model and its verification through cavity benchmark problems</title><source>Access via Wiley Online Library</source><creator>Chen, Shengli ; Abousleiman, Younane ; Muraleetharan, Kanthasamy K.</creator><creatorcontrib>Chen, Shengli ; Abousleiman, Younane ; Muraleetharan, Kanthasamy K.</creatorcontrib><description>This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, that is, the ratio between the image stress and the current stress quantities. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of cavity contraction (wellbore drilling/tunnel excavation) boundary value problems. The predictions from the ABAQUS simulations are found to be in excellent agreement with the analytical solutions, thus demonstrating the validity and accuracy of the proposed integration scheme.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3311</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Boundary value problems ; Bounding surface ; bounding surface model ; cavity contraction ; Computer applications ; Differential equations ; Dredging ; Drilling ; Exact solutions ; Excavation ; Finite element method ; implicit integration algorithm ; Integration ; Mathematical models ; return mapping approach ; Strain ; UMAT</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2022-02, Vol.46 (3), p.553-569</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-60483244a434c0a7f83e8d685ad110809afe7f0966f810623f6da62297c0380f3</citedby><cites>FETCH-LOGICAL-c2931-60483244a434c0a7f83e8d685ad110809afe7f0966f810623f6da62297c0380f3</cites><orcidid>0000-0002-5595-8692 ; 0000-0002-4187-4818 ; 0000-0002-2727-5034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Shengli</creatorcontrib><creatorcontrib>Abousleiman, Younane</creatorcontrib><creatorcontrib>Muraleetharan, Kanthasamy K.</creatorcontrib><title>Computational implementation of bounding surface model and its verification through cavity benchmark problems</title><title>International journal for numerical and analytical methods in geomechanics</title><description>This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, that is, the ratio between the image stress and the current stress quantities. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of cavity contraction (wellbore drilling/tunnel excavation) boundary value problems. The predictions from the ABAQUS simulations are found to be in excellent agreement with the analytical solutions, thus demonstrating the validity and accuracy of the proposed integration scheme.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Bounding surface</subject><subject>bounding surface model</subject><subject>cavity contraction</subject><subject>Computer applications</subject><subject>Differential equations</subject><subject>Dredging</subject><subject>Drilling</subject><subject>Exact solutions</subject><subject>Excavation</subject><subject>Finite element method</subject><subject>implicit integration algorithm</subject><subject>Integration</subject><subject>Mathematical models</subject><subject>return mapping approach</subject><subject>Strain</subject><subject>UMAT</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqUg8QmWuHBJWduJ4xyrCgpSBRc4W65jty5JXOykqH-PS7hyWmn3aXZmELolMCMA9KFTmxljhJyhCYGKZ5Uo2DmaAOMsq4CTS3QV4w4AinSdoHbh2_3Qq975TjXYtfvGtKYbF9hbvPZDV7tug-MQrNIGt742DVZdjV0f8cEEZ50e8X4b_LDZYq0Orj_iten0tlXhE--DXyfdeI0urGqiufmbU_Tx9Pi-eM5Wb8uXxXyVaVoxknHIBaN5rnKWa1ClFcyImotC1YSAgEpZU9rkn1tBgFNmea04pVWpgQmwbIruRt30-GswsZc7P4QUMErKaZGXFAqSqPuR0sHHGIyV--CS36MkIE9lylSmPJWZ0GxEv11jjv9y8nW-_OV_AI_ydk4</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Shengli</creator><creator>Abousleiman, Younane</creator><creator>Muraleetharan, Kanthasamy K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5595-8692</orcidid><orcidid>https://orcid.org/0000-0002-4187-4818</orcidid><orcidid>https://orcid.org/0000-0002-2727-5034</orcidid></search><sort><creationdate>20220201</creationdate><title>Computational implementation of bounding surface model and its verification through cavity benchmark problems</title><author>Chen, Shengli ; Abousleiman, Younane ; Muraleetharan, Kanthasamy K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-60483244a434c0a7f83e8d685ad110809afe7f0966f810623f6da62297c0380f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Bounding surface</topic><topic>bounding surface model</topic><topic>cavity contraction</topic><topic>Computer applications</topic><topic>Differential equations</topic><topic>Dredging</topic><topic>Drilling</topic><topic>Exact solutions</topic><topic>Excavation</topic><topic>Finite element method</topic><topic>implicit integration algorithm</topic><topic>Integration</topic><topic>Mathematical models</topic><topic>return mapping approach</topic><topic>Strain</topic><topic>UMAT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shengli</creatorcontrib><creatorcontrib>Abousleiman, Younane</creatorcontrib><creatorcontrib>Muraleetharan, Kanthasamy K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shengli</au><au>Abousleiman, Younane</au><au>Muraleetharan, Kanthasamy K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational implementation of bounding surface model and its verification through cavity benchmark problems</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>46</volume><issue>3</issue><spage>553</spage><epage>569</epage><pages>553-569</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, that is, the ratio between the image stress and the current stress quantities. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of cavity contraction (wellbore drilling/tunnel excavation) boundary value problems. The predictions from the ABAQUS simulations are found to be in excellent agreement with the analytical solutions, thus demonstrating the validity and accuracy of the proposed integration scheme.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3311</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5595-8692</orcidid><orcidid>https://orcid.org/0000-0002-4187-4818</orcidid><orcidid>https://orcid.org/0000-0002-2727-5034</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2022-02, Vol.46 (3), p.553-569 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_journals_2625472051 |
source | Access via Wiley Online Library |
subjects | Algorithms Boundary value problems Bounding surface bounding surface model cavity contraction Computer applications Differential equations Dredging Drilling Exact solutions Excavation Finite element method implicit integration algorithm Integration Mathematical models return mapping approach Strain UMAT |
title | Computational implementation of bounding surface model and its verification through cavity benchmark problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20implementation%20of%20bounding%20surface%20model%20and%20its%20verification%20through%20cavity%20benchmark%20problems&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Chen,%20Shengli&rft.date=2022-02-01&rft.volume=46&rft.issue=3&rft.spage=553&rft.epage=569&rft.pages=553-569&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3311&rft_dat=%3Cproquest_cross%3E2625472051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625472051&rft_id=info:pmid/&rfr_iscdi=true |