Computational implementation of bounding surface model and its verification through cavity benchmark problems

This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2022-02, Vol.46 (3), p.553-569
Hauptverfasser: Chen, Shengli, Abousleiman, Younane, Muraleetharan, Kanthasamy K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 3
container_start_page 553
container_title International journal for numerical and analytical methods in geomechanics
container_volume 46
creator Chen, Shengli
Abousleiman, Younane
Muraleetharan, Kanthasamy K.
description This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, that is, the ratio between the image stress and the current stress quantities. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of cavity contraction (wellbore drilling/tunnel excavation) boundary value problems. The predictions from the ABAQUS simulations are found to be in excellent agreement with the analytical solutions, thus demonstrating the validity and accuracy of the proposed integration scheme.
doi_str_mv 10.1002/nag.3311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625472051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625472051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-60483244a434c0a7f83e8d685ad110809afe7f0966f810623f6da62297c0380f3</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqUg8QmWuHBJWduJ4xyrCgpSBRc4W65jty5JXOykqH-PS7hyWmn3aXZmELolMCMA9KFTmxljhJyhCYGKZ5Uo2DmaAOMsq4CTS3QV4w4AinSdoHbh2_3Qq975TjXYtfvGtKYbF9hbvPZDV7tug-MQrNIGt742DVZdjV0f8cEEZ50e8X4b_LDZYq0Orj_iten0tlXhE--DXyfdeI0urGqiufmbU_Tx9Pi-eM5Wb8uXxXyVaVoxknHIBaN5rnKWa1ClFcyImotC1YSAgEpZU9rkn1tBgFNmea04pVWpgQmwbIruRt30-GswsZc7P4QUMErKaZGXFAqSqPuR0sHHGIyV--CS36MkIE9lylSmPJWZ0GxEv11jjv9y8nW-_OV_AI_ydk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625472051</pqid></control><display><type>article</type><title>Computational implementation of bounding surface model and its verification through cavity benchmark problems</title><source>Access via Wiley Online Library</source><creator>Chen, Shengli ; Abousleiman, Younane ; Muraleetharan, Kanthasamy K.</creator><creatorcontrib>Chen, Shengli ; Abousleiman, Younane ; Muraleetharan, Kanthasamy K.</creatorcontrib><description>This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, that is, the ratio between the image stress and the current stress quantities. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of cavity contraction (wellbore drilling/tunnel excavation) boundary value problems. The predictions from the ABAQUS simulations are found to be in excellent agreement with the analytical solutions, thus demonstrating the validity and accuracy of the proposed integration scheme.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3311</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Boundary value problems ; Bounding surface ; bounding surface model ; cavity contraction ; Computer applications ; Differential equations ; Dredging ; Drilling ; Exact solutions ; Excavation ; Finite element method ; implicit integration algorithm ; Integration ; Mathematical models ; return mapping approach ; Strain ; UMAT</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2022-02, Vol.46 (3), p.553-569</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-60483244a434c0a7f83e8d685ad110809afe7f0966f810623f6da62297c0380f3</citedby><cites>FETCH-LOGICAL-c2931-60483244a434c0a7f83e8d685ad110809afe7f0966f810623f6da62297c0380f3</cites><orcidid>0000-0002-5595-8692 ; 0000-0002-4187-4818 ; 0000-0002-2727-5034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Shengli</creatorcontrib><creatorcontrib>Abousleiman, Younane</creatorcontrib><creatorcontrib>Muraleetharan, Kanthasamy K.</creatorcontrib><title>Computational implementation of bounding surface model and its verification through cavity benchmark problems</title><title>International journal for numerical and analytical methods in geomechanics</title><description>This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, that is, the ratio between the image stress and the current stress quantities. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of cavity contraction (wellbore drilling/tunnel excavation) boundary value problems. The predictions from the ABAQUS simulations are found to be in excellent agreement with the analytical solutions, thus demonstrating the validity and accuracy of the proposed integration scheme.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Bounding surface</subject><subject>bounding surface model</subject><subject>cavity contraction</subject><subject>Computer applications</subject><subject>Differential equations</subject><subject>Dredging</subject><subject>Drilling</subject><subject>Exact solutions</subject><subject>Excavation</subject><subject>Finite element method</subject><subject>implicit integration algorithm</subject><subject>Integration</subject><subject>Mathematical models</subject><subject>return mapping approach</subject><subject>Strain</subject><subject>UMAT</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqUg8QmWuHBJWduJ4xyrCgpSBRc4W65jty5JXOykqH-PS7hyWmn3aXZmELolMCMA9KFTmxljhJyhCYGKZ5Uo2DmaAOMsq4CTS3QV4w4AinSdoHbh2_3Qq975TjXYtfvGtKYbF9hbvPZDV7tug-MQrNIGt742DVZdjV0f8cEEZ50e8X4b_LDZYq0Orj_iten0tlXhE--DXyfdeI0urGqiufmbU_Tx9Pi-eM5Wb8uXxXyVaVoxknHIBaN5rnKWa1ClFcyImotC1YSAgEpZU9rkn1tBgFNmea04pVWpgQmwbIruRt30-GswsZc7P4QUMErKaZGXFAqSqPuR0sHHGIyV--CS36MkIE9lylSmPJWZ0GxEv11jjv9y8nW-_OV_AI_ydk4</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Shengli</creator><creator>Abousleiman, Younane</creator><creator>Muraleetharan, Kanthasamy K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5595-8692</orcidid><orcidid>https://orcid.org/0000-0002-4187-4818</orcidid><orcidid>https://orcid.org/0000-0002-2727-5034</orcidid></search><sort><creationdate>20220201</creationdate><title>Computational implementation of bounding surface model and its verification through cavity benchmark problems</title><author>Chen, Shengli ; Abousleiman, Younane ; Muraleetharan, Kanthasamy K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-60483244a434c0a7f83e8d685ad110809afe7f0966f810623f6da62297c0380f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Bounding surface</topic><topic>bounding surface model</topic><topic>cavity contraction</topic><topic>Computer applications</topic><topic>Differential equations</topic><topic>Dredging</topic><topic>Drilling</topic><topic>Exact solutions</topic><topic>Excavation</topic><topic>Finite element method</topic><topic>implicit integration algorithm</topic><topic>Integration</topic><topic>Mathematical models</topic><topic>return mapping approach</topic><topic>Strain</topic><topic>UMAT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shengli</creatorcontrib><creatorcontrib>Abousleiman, Younane</creatorcontrib><creatorcontrib>Muraleetharan, Kanthasamy K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shengli</au><au>Abousleiman, Younane</au><au>Muraleetharan, Kanthasamy K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational implementation of bounding surface model and its verification through cavity benchmark problems</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>46</volume><issue>3</issue><spage>553</spage><epage>569</epage><pages>553-569</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>This paper develops an implicit integration algorithm for a general form of the bounding surface model, using the return mapping approach (elastic predictor‐plastic corrector), to obtain the updated stresses for given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, that is, the ratio between the image stress and the current stress quantities. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of cavity contraction (wellbore drilling/tunnel excavation) boundary value problems. The predictions from the ABAQUS simulations are found to be in excellent agreement with the analytical solutions, thus demonstrating the validity and accuracy of the proposed integration scheme.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3311</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5595-8692</orcidid><orcidid>https://orcid.org/0000-0002-4187-4818</orcidid><orcidid>https://orcid.org/0000-0002-2727-5034</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2022-02, Vol.46 (3), p.553-569
issn 0363-9061
1096-9853
language eng
recordid cdi_proquest_journals_2625472051
source Access via Wiley Online Library
subjects Algorithms
Boundary value problems
Bounding surface
bounding surface model
cavity contraction
Computer applications
Differential equations
Dredging
Drilling
Exact solutions
Excavation
Finite element method
implicit integration algorithm
Integration
Mathematical models
return mapping approach
Strain
UMAT
title Computational implementation of bounding surface model and its verification through cavity benchmark problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20implementation%20of%20bounding%20surface%20model%20and%20its%20verification%20through%20cavity%20benchmark%20problems&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Chen,%20Shengli&rft.date=2022-02-01&rft.volume=46&rft.issue=3&rft.spage=553&rft.epage=569&rft.pages=553-569&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3311&rft_dat=%3Cproquest_cross%3E2625472051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625472051&rft_id=info:pmid/&rfr_iscdi=true