Formal Mathematics Statement Curriculum Learning
We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-02 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Polu, Stanislas Han, Jesse Michael Zheng, Kunhao Mantas Baksys Babuschkin, Igor Sutskever, Ilya |
description | We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we achieve state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2625416400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625416400</sourcerecordid><originalsourceid>FETCH-proquest_journals_26254164003</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScC6cnF92LxUEn3UsoqbbkoifJ--vgAzj9w_evWIVCtM1RIm5YndICAKgPqJSoGPSRvHH8avLTepPnMfFbNtl6GzLvCtE8Flc8v1hDYQ6PHVtPxiVb_7pl-_50787Ni-K72JSHJRYKXxpQo5KtlgDiv-sDiUAzUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625416400</pqid></control><display><type>article</type><title>Formal Mathematics Statement Curriculum Learning</title><source>Free E- Journals</source><creator>Polu, Stanislas ; Han, Jesse Michael ; Zheng, Kunhao ; Mantas Baksys ; Babuschkin, Igor ; Sutskever, Ilya</creator><creatorcontrib>Polu, Stanislas ; Han, Jesse Michael ; Zheng, Kunhao ; Mantas Baksys ; Babuschkin, Igor ; Sutskever, Ilya</creatorcontrib><description>We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we achieve state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curricula ; Iterative methods ; Learning ; Mathematical analysis</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Polu, Stanislas</creatorcontrib><creatorcontrib>Han, Jesse Michael</creatorcontrib><creatorcontrib>Zheng, Kunhao</creatorcontrib><creatorcontrib>Mantas Baksys</creatorcontrib><creatorcontrib>Babuschkin, Igor</creatorcontrib><creatorcontrib>Sutskever, Ilya</creatorcontrib><title>Formal Mathematics Statement Curriculum Learning</title><title>arXiv.org</title><description>We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we achieve state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads.</description><subject>Curricula</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScC6cnF92LxUEn3UsoqbbkoifJ--vgAzj9w_evWIVCtM1RIm5YndICAKgPqJSoGPSRvHH8avLTepPnMfFbNtl6GzLvCtE8Flc8v1hDYQ6PHVtPxiVb_7pl-_50787Ni-K72JSHJRYKXxpQo5KtlgDiv-sDiUAzUg</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Polu, Stanislas</creator><creator>Han, Jesse Michael</creator><creator>Zheng, Kunhao</creator><creator>Mantas Baksys</creator><creator>Babuschkin, Igor</creator><creator>Sutskever, Ilya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220203</creationdate><title>Formal Mathematics Statement Curriculum Learning</title><author>Polu, Stanislas ; Han, Jesse Michael ; Zheng, Kunhao ; Mantas Baksys ; Babuschkin, Igor ; Sutskever, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26254164003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Curricula</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Polu, Stanislas</creatorcontrib><creatorcontrib>Han, Jesse Michael</creatorcontrib><creatorcontrib>Zheng, Kunhao</creatorcontrib><creatorcontrib>Mantas Baksys</creatorcontrib><creatorcontrib>Babuschkin, Igor</creatorcontrib><creatorcontrib>Sutskever, Ilya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polu, Stanislas</au><au>Han, Jesse Michael</au><au>Zheng, Kunhao</au><au>Mantas Baksys</au><au>Babuschkin, Igor</au><au>Sutskever, Ilya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Formal Mathematics Statement Curriculum Learning</atitle><jtitle>arXiv.org</jtitle><date>2022-02-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we achieve state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2625416400 |
source | Free E- Journals |
subjects | Curricula Iterative methods Learning Mathematical analysis |
title | Formal Mathematics Statement Curriculum Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Formal%20Mathematics%20Statement%20Curriculum%20Learning&rft.jtitle=arXiv.org&rft.au=Polu,%20Stanislas&rft.date=2022-02-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2625416400%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625416400&rft_id=info:pmid/&rfr_iscdi=true |