Enhanced Thermoelectric Performance of Vertical Bridgman-Grown Mg2Si by Codoping with Sb and Zn
To improve the thermoelectric (TE) performance of Mg 2 Si by optimizing the carrier concentration and reducing thermal conductivity, we focus on codoping Sb and Zn using theoretical and experimental methods. First-principles calculations show that Sb is a stable and controllable n -type dopant for M...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2022-03, Vol.51 (3), p.1311-1321 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 |
---|---|
container_issue | 3 |
container_start_page | 1311 |
container_title | Journal of electronic materials |
container_volume | 51 |
creator | Shiojiri, Daishi Iida, Tsutomu Hamba, Hiroto Kodama, Takuya Yamaguchi, Masato Hirayama, Naomi Imai, Yoji |
description | To improve the thermoelectric (TE) performance of Mg
2
Si by optimizing the carrier concentration and reducing thermal conductivity, we focus on codoping Sb and Zn using theoretical and experimental methods. First-principles calculations show that Sb is a stable and controllable
n
-type dopant for Mg
2
Si, whereas Zn considerably shrinks the Mg
2
Si cell. We fabricate dense and high-purity polycrystalline Mg
2
M
x
Si (M = Sb, Zn;
x
= 0, 0.1, 0.3, and 0.5 at.%) via the all-melt process of the conventional vertical Bridgman (VB) method and examine the influence of dilute codoping of Sb and Zn on the TE properties of Mg
2
Si. VB-grown Mg
2
Si doped with 0.5 at.% Zn and Sb shows higher electrical conductivity than pure Mg
2
Si, achieving an increased power factor by 4.62–15.23% over that of the sintered specimen under the same doping rate at 323–873 K. Because the decreased lattice thermal conductivity of the codoped specimens nullifies the increased electronic thermal conductivity, the total thermal conductivity is similar to that of pure Mg
2
Si. Consequently, the dimensionless figure of merit of VB-grown Mg
2
Si doped with 0.5 at.% Zn and Sb reaches 0.82 at 873 K.
Graphical Abstract |
doi_str_mv | 10.1007/s11664-021-09404-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625413043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625413043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6eccac388b5347aa692942d4fe9d3e93280b91f756365f3e98b3740f06f52b333</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKdfwFPAczTvbY865iZMFDZFvIQ0TbqOLZlJx9i3t7OCN08P_J__C_wAuCb4lmCc3SVCpOQIU4JwwTFH2QkYEMEZIrn8OAUDzCRBgjJxDi5SWmFMBMnJAKixX2pvbAUXSxs3wa6taWNj4KuNLsTN8QeDg-82to3Ra_gQm6ruZDSJYe_hc03nDSwPcBSqsG18DfdNu4TzEmpfwU9_Cc6cXid79XuH4O1xvBhN0exl8jS6nyHDSNEiaY3RhuV5KRjPtJYFLTituLNFxWzBaI7LgrhMSCaF65S8ZBnHDksnaMkYG4Kbvncbw9fOplatwi76blJRSQUnDPOji_YuE0NK0Tq1jc1Gx4MiWB1Bqh6k6kCqH5Aq60KsD6XO7Gsb_6r_SX0DyAZ04g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625413043</pqid></control><display><type>article</type><title>Enhanced Thermoelectric Performance of Vertical Bridgman-Grown Mg2Si by Codoping with Sb and Zn</title><source>Springer Nature - Complete Springer Journals</source><creator>Shiojiri, Daishi ; Iida, Tsutomu ; Hamba, Hiroto ; Kodama, Takuya ; Yamaguchi, Masato ; Hirayama, Naomi ; Imai, Yoji</creator><creatorcontrib>Shiojiri, Daishi ; Iida, Tsutomu ; Hamba, Hiroto ; Kodama, Takuya ; Yamaguchi, Masato ; Hirayama, Naomi ; Imai, Yoji</creatorcontrib><description>To improve the thermoelectric (TE) performance of Mg
2
Si by optimizing the carrier concentration and reducing thermal conductivity, we focus on codoping Sb and Zn using theoretical and experimental methods. First-principles calculations show that Sb is a stable and controllable
n
-type dopant for Mg
2
Si, whereas Zn considerably shrinks the Mg
2
Si cell. We fabricate dense and high-purity polycrystalline Mg
2
M
x
Si (M = Sb, Zn;
x
= 0, 0.1, 0.3, and 0.5 at.%) via the all-melt process of the conventional vertical Bridgman (VB) method and examine the influence of dilute codoping of Sb and Zn on the TE properties of Mg
2
Si. VB-grown Mg
2
Si doped with 0.5 at.% Zn and Sb shows higher electrical conductivity than pure Mg
2
Si, achieving an increased power factor by 4.62–15.23% over that of the sintered specimen under the same doping rate at 323–873 K. Because the decreased lattice thermal conductivity of the codoped specimens nullifies the increased electronic thermal conductivity, the total thermal conductivity is similar to that of pure Mg
2
Si. Consequently, the dimensionless figure of merit of VB-grown Mg
2
Si doped with 0.5 at.% Zn and Sb reaches 0.82 at 873 K.
Graphical Abstract</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-021-09404-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bridgman method ; Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal growth ; Electrical resistivity ; Electronics and Microelectronics ; Figure of merit ; First principles ; Heat conductivity ; Heat transfer ; Instrumentation ; Intermetallic compounds ; Magnesium compounds ; Materials Science ; Metal silicides ; Optical and Electronic Materials ; Original Research Article ; Power factor ; Solid State Physics ; Thermal conductivity ; Thermoelectricity</subject><ispartof>Journal of electronic materials, 2022-03, Vol.51 (3), p.1311-1321</ispartof><rights>The Minerals, Metals & Materials Society 2022</rights><rights>The Minerals, Metals & Materials Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6eccac388b5347aa692942d4fe9d3e93280b91f756365f3e98b3740f06f52b333</citedby><cites>FETCH-LOGICAL-c319t-6eccac388b5347aa692942d4fe9d3e93280b91f756365f3e98b3740f06f52b333</cites><orcidid>0000-0001-8161-8969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-021-09404-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-021-09404-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shiojiri, Daishi</creatorcontrib><creatorcontrib>Iida, Tsutomu</creatorcontrib><creatorcontrib>Hamba, Hiroto</creatorcontrib><creatorcontrib>Kodama, Takuya</creatorcontrib><creatorcontrib>Yamaguchi, Masato</creatorcontrib><creatorcontrib>Hirayama, Naomi</creatorcontrib><creatorcontrib>Imai, Yoji</creatorcontrib><title>Enhanced Thermoelectric Performance of Vertical Bridgman-Grown Mg2Si by Codoping with Sb and Zn</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>To improve the thermoelectric (TE) performance of Mg
2
Si by optimizing the carrier concentration and reducing thermal conductivity, we focus on codoping Sb and Zn using theoretical and experimental methods. First-principles calculations show that Sb is a stable and controllable
n
-type dopant for Mg
2
Si, whereas Zn considerably shrinks the Mg
2
Si cell. We fabricate dense and high-purity polycrystalline Mg
2
M
x
Si (M = Sb, Zn;
x
= 0, 0.1, 0.3, and 0.5 at.%) via the all-melt process of the conventional vertical Bridgman (VB) method and examine the influence of dilute codoping of Sb and Zn on the TE properties of Mg
2
Si. VB-grown Mg
2
Si doped with 0.5 at.% Zn and Sb shows higher electrical conductivity than pure Mg
2
Si, achieving an increased power factor by 4.62–15.23% over that of the sintered specimen under the same doping rate at 323–873 K. Because the decreased lattice thermal conductivity of the codoped specimens nullifies the increased electronic thermal conductivity, the total thermal conductivity is similar to that of pure Mg
2
Si. Consequently, the dimensionless figure of merit of VB-grown Mg
2
Si doped with 0.5 at.% Zn and Sb reaches 0.82 at 873 K.
Graphical Abstract</description><subject>Bridgman method</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal growth</subject><subject>Electrical resistivity</subject><subject>Electronics and Microelectronics</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Instrumentation</subject><subject>Intermetallic compounds</subject><subject>Magnesium compounds</subject><subject>Materials Science</subject><subject>Metal silicides</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Power factor</subject><subject>Solid State Physics</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LwzAYx4MoOKdfwFPAczTvbY865iZMFDZFvIQ0TbqOLZlJx9i3t7OCN08P_J__C_wAuCb4lmCc3SVCpOQIU4JwwTFH2QkYEMEZIrn8OAUDzCRBgjJxDi5SWmFMBMnJAKixX2pvbAUXSxs3wa6taWNj4KuNLsTN8QeDg-82to3Ra_gQm6ruZDSJYe_hc03nDSwPcBSqsG18DfdNu4TzEmpfwU9_Cc6cXid79XuH4O1xvBhN0exl8jS6nyHDSNEiaY3RhuV5KRjPtJYFLTituLNFxWzBaI7LgrhMSCaF65S8ZBnHDksnaMkYG4Kbvncbw9fOplatwi76blJRSQUnDPOji_YuE0NK0Tq1jc1Gx4MiWB1Bqh6k6kCqH5Aq60KsD6XO7Gsb_6r_SX0DyAZ04g</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Shiojiri, Daishi</creator><creator>Iida, Tsutomu</creator><creator>Hamba, Hiroto</creator><creator>Kodama, Takuya</creator><creator>Yamaguchi, Masato</creator><creator>Hirayama, Naomi</creator><creator>Imai, Yoji</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-8161-8969</orcidid></search><sort><creationdate>20220301</creationdate><title>Enhanced Thermoelectric Performance of Vertical Bridgman-Grown Mg2Si by Codoping with Sb and Zn</title><author>Shiojiri, Daishi ; Iida, Tsutomu ; Hamba, Hiroto ; Kodama, Takuya ; Yamaguchi, Masato ; Hirayama, Naomi ; Imai, Yoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6eccac388b5347aa692942d4fe9d3e93280b91f756365f3e98b3740f06f52b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bridgman method</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal growth</topic><topic>Electrical resistivity</topic><topic>Electronics and Microelectronics</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Instrumentation</topic><topic>Intermetallic compounds</topic><topic>Magnesium compounds</topic><topic>Materials Science</topic><topic>Metal silicides</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Power factor</topic><topic>Solid State Physics</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiojiri, Daishi</creatorcontrib><creatorcontrib>Iida, Tsutomu</creatorcontrib><creatorcontrib>Hamba, Hiroto</creatorcontrib><creatorcontrib>Kodama, Takuya</creatorcontrib><creatorcontrib>Yamaguchi, Masato</creatorcontrib><creatorcontrib>Hirayama, Naomi</creatorcontrib><creatorcontrib>Imai, Yoji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiojiri, Daishi</au><au>Iida, Tsutomu</au><au>Hamba, Hiroto</au><au>Kodama, Takuya</au><au>Yamaguchi, Masato</au><au>Hirayama, Naomi</au><au>Imai, Yoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Thermoelectric Performance of Vertical Bridgman-Grown Mg2Si by Codoping with Sb and Zn</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>51</volume><issue>3</issue><spage>1311</spage><epage>1321</epage><pages>1311-1321</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>To improve the thermoelectric (TE) performance of Mg
2
Si by optimizing the carrier concentration and reducing thermal conductivity, we focus on codoping Sb and Zn using theoretical and experimental methods. First-principles calculations show that Sb is a stable and controllable
n
-type dopant for Mg
2
Si, whereas Zn considerably shrinks the Mg
2
Si cell. We fabricate dense and high-purity polycrystalline Mg
2
M
x
Si (M = Sb, Zn;
x
= 0, 0.1, 0.3, and 0.5 at.%) via the all-melt process of the conventional vertical Bridgman (VB) method and examine the influence of dilute codoping of Sb and Zn on the TE properties of Mg
2
Si. VB-grown Mg
2
Si doped with 0.5 at.% Zn and Sb shows higher electrical conductivity than pure Mg
2
Si, achieving an increased power factor by 4.62–15.23% over that of the sintered specimen under the same doping rate at 323–873 K. Because the decreased lattice thermal conductivity of the codoped specimens nullifies the increased electronic thermal conductivity, the total thermal conductivity is similar to that of pure Mg
2
Si. Consequently, the dimensionless figure of merit of VB-grown Mg
2
Si doped with 0.5 at.% Zn and Sb reaches 0.82 at 873 K.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-021-09404-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8161-8969</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2022-03, Vol.51 (3), p.1311-1321 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2625413043 |
source | Springer Nature - Complete Springer Journals |
subjects | Bridgman method Carrier density Characterization and Evaluation of Materials Chemistry and Materials Science Crystal growth Electrical resistivity Electronics and Microelectronics Figure of merit First principles Heat conductivity Heat transfer Instrumentation Intermetallic compounds Magnesium compounds Materials Science Metal silicides Optical and Electronic Materials Original Research Article Power factor Solid State Physics Thermal conductivity Thermoelectricity |
title | Enhanced Thermoelectric Performance of Vertical Bridgman-Grown Mg2Si by Codoping with Sb and Zn |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Thermoelectric%20Performance%20of%20Vertical%20Bridgman-Grown%20Mg2Si%20by%20Codoping%20with%20Sb%20and%20Zn&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Shiojiri,%20Daishi&rft.date=2022-03-01&rft.volume=51&rft.issue=3&rft.spage=1311&rft.epage=1321&rft.pages=1311-1321&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-021-09404-7&rft_dat=%3Cproquest_cross%3E2625413043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625413043&rft_id=info:pmid/&rfr_iscdi=true |