Influence of Sintering Duration on Crystal Phase and Optical Band Gap of Mn3+ -Doped Willemite-Based Glass-Ceramics

A conventional melt quenching technique was used to successfully fabricate Mn 2 O 3 -doped willemite glass-ceramics (Zn 2 SiO 4 :Mn 3+ ) produced from the ZnO-SLS glasses. The results from XRD revealed that willemite crystallization is improved by increasing the sintering duration. It was revealed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2022-03, Vol.51 (3), p.1163-1168
Hauptverfasser: Wei, L. Z., Mun, C. W., Zakaly, H. M. H., Issa, Shams A. M., Zaid, M. H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1168
container_issue 3
container_start_page 1163
container_title Journal of electronic materials
container_volume 51
creator Wei, L. Z.
Mun, C. W.
Zakaly, H. M. H.
Issa, Shams A. M.
Zaid, M. H. M.
description A conventional melt quenching technique was used to successfully fabricate Mn 2 O 3 -doped willemite glass-ceramics (Zn 2 SiO 4 :Mn 3+ ) produced from the ZnO-SLS glasses. The results from XRD revealed that willemite crystallization is improved by increasing the sintering duration. It was revealed that, as the sintering duration progressed, the phase formation shifted from amorphous to α-Zn 2 SiO 4 crystal. In addition, the structural growth of willemite phases can be seen using FTIR spectroscopy. The results of UV-Vis spectroscopy indicated that the intense absorption occurs in the UV zone, with wavelengths ranging from 250 nm to 400 nm, while the optical band gap showed a decreasing trend from 3.61 eV to 2.52 eV. These results perfectly established that Mn 3+ dopant is potentially beneficial for producing willemite glass-ceramics for optoelectronic applications.
doi_str_mv 10.1007/s11664-021-09378-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625412717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625412717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-e2c7994abd1b87090ff2636c3a3ba2b72687fc4d018d0de3ee19e65fd95fd3493</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKuAS4nmJW3aLp2q48DICCq6C2n7qh06bU3axfy9qRXcCQnhPe65gUPIOfAr4Dy6dgBKBYwLYDyRUczUAZlBGEgGsXo_JDMuFbBQyPCYnDi35RxCiGFG3Kop6wGbHGlb0ueq6dFWzQe9Hazpq7ah_qR273pT06dP45CapqCbrq9yv1mMw9J0I_vYyEvKbtsOC_pW1TXuqh7ZwiM-UhvnWIrW7KrcnZKj0tQOz37fOXm9v3tJH9h6s1ylN2uWiyDpGYo8SpLAZAVkccQTXpZCSZVLIzMjskioOCrzoOAQF7xAiQgJqrAsEn9lkMg5uZh6O9t-Deh6vW0H2_gvtVAiDEBEEPmUmFK5bZ2zWOrOVjtj9xq4HuXqSa72cvWPXK08JCfIdaMutH_V_1DfS1V8RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625412717</pqid></control><display><type>article</type><title>Influence of Sintering Duration on Crystal Phase and Optical Band Gap of Mn3+ -Doped Willemite-Based Glass-Ceramics</title><source>SpringerNature Journals</source><creator>Wei, L. Z. ; Mun, C. W. ; Zakaly, H. M. H. ; Issa, Shams A. M. ; Zaid, M. H. M.</creator><creatorcontrib>Wei, L. Z. ; Mun, C. W. ; Zakaly, H. M. H. ; Issa, Shams A. M. ; Zaid, M. H. M.</creatorcontrib><description>A conventional melt quenching technique was used to successfully fabricate Mn 2 O 3 -doped willemite glass-ceramics (Zn 2 SiO 4 :Mn 3+ ) produced from the ZnO-SLS glasses. The results from XRD revealed that willemite crystallization is improved by increasing the sintering duration. It was revealed that, as the sintering duration progressed, the phase formation shifted from amorphous to α-Zn 2 SiO 4 crystal. In addition, the structural growth of willemite phases can be seen using FTIR spectroscopy. The results of UV-Vis spectroscopy indicated that the intense absorption occurs in the UV zone, with wavelengths ranging from 250 nm to 400 nm, while the optical band gap showed a decreasing trend from 3.61 eV to 2.52 eV. These results perfectly established that Mn 3+ dopant is potentially beneficial for producing willemite glass-ceramics for optoelectronic applications.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-021-09378-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Crystallization ; Crystals ; Electronics and Microelectronics ; Energy gap ; Glass ceramics ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Optoelectronics ; Original Research Article ; Sintering ; Solid State Physics ; Spectrum analysis ; Zinc oxide ; Zinc silicates</subject><ispartof>Journal of electronic materials, 2022-03, Vol.51 (3), p.1163-1168</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-e2c7994abd1b87090ff2636c3a3ba2b72687fc4d018d0de3ee19e65fd95fd3493</citedby><cites>FETCH-LOGICAL-c249t-e2c7994abd1b87090ff2636c3a3ba2b72687fc4d018d0de3ee19e65fd95fd3493</cites><orcidid>0000-0001-6734-800X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-021-09378-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-021-09378-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wei, L. Z.</creatorcontrib><creatorcontrib>Mun, C. W.</creatorcontrib><creatorcontrib>Zakaly, H. M. H.</creatorcontrib><creatorcontrib>Issa, Shams A. M.</creatorcontrib><creatorcontrib>Zaid, M. H. M.</creatorcontrib><title>Influence of Sintering Duration on Crystal Phase and Optical Band Gap of Mn3+ -Doped Willemite-Based Glass-Ceramics</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>A conventional melt quenching technique was used to successfully fabricate Mn 2 O 3 -doped willemite glass-ceramics (Zn 2 SiO 4 :Mn 3+ ) produced from the ZnO-SLS glasses. The results from XRD revealed that willemite crystallization is improved by increasing the sintering duration. It was revealed that, as the sintering duration progressed, the phase formation shifted from amorphous to α-Zn 2 SiO 4 crystal. In addition, the structural growth of willemite phases can be seen using FTIR spectroscopy. The results of UV-Vis spectroscopy indicated that the intense absorption occurs in the UV zone, with wavelengths ranging from 250 nm to 400 nm, while the optical band gap showed a decreasing trend from 3.61 eV to 2.52 eV. These results perfectly established that Mn 3+ dopant is potentially beneficial for producing willemite glass-ceramics for optoelectronic applications.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>Glass ceramics</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Original Research Article</subject><subject>Sintering</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Zinc oxide</subject><subject>Zinc silicates</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFKxDAURYMoOI7-gKuAS4nmJW3aLp2q48DICCq6C2n7qh06bU3axfy9qRXcCQnhPe65gUPIOfAr4Dy6dgBKBYwLYDyRUczUAZlBGEgGsXo_JDMuFbBQyPCYnDi35RxCiGFG3Kop6wGbHGlb0ueq6dFWzQe9Hazpq7ah_qR273pT06dP45CapqCbrq9yv1mMw9J0I_vYyEvKbtsOC_pW1TXuqh7ZwiM-UhvnWIrW7KrcnZKj0tQOz37fOXm9v3tJH9h6s1ylN2uWiyDpGYo8SpLAZAVkccQTXpZCSZVLIzMjskioOCrzoOAQF7xAiQgJqrAsEn9lkMg5uZh6O9t-Deh6vW0H2_gvtVAiDEBEEPmUmFK5bZ2zWOrOVjtj9xq4HuXqSa72cvWPXK08JCfIdaMutH_V_1DfS1V8RQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wei, L. Z.</creator><creator>Mun, C. W.</creator><creator>Zakaly, H. M. H.</creator><creator>Issa, Shams A. M.</creator><creator>Zaid, M. H. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-6734-800X</orcidid></search><sort><creationdate>20220301</creationdate><title>Influence of Sintering Duration on Crystal Phase and Optical Band Gap of Mn3+ -Doped Willemite-Based Glass-Ceramics</title><author>Wei, L. Z. ; Mun, C. W. ; Zakaly, H. M. H. ; Issa, Shams A. M. ; Zaid, M. H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-e2c7994abd1b87090ff2636c3a3ba2b72687fc4d018d0de3ee19e65fd95fd3493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>Glass ceramics</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Original Research Article</topic><topic>Sintering</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Zinc oxide</topic><topic>Zinc silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, L. Z.</creatorcontrib><creatorcontrib>Mun, C. W.</creatorcontrib><creatorcontrib>Zakaly, H. M. H.</creatorcontrib><creatorcontrib>Issa, Shams A. M.</creatorcontrib><creatorcontrib>Zaid, M. H. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, L. Z.</au><au>Mun, C. W.</au><au>Zakaly, H. M. H.</au><au>Issa, Shams A. M.</au><au>Zaid, M. H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Sintering Duration on Crystal Phase and Optical Band Gap of Mn3+ -Doped Willemite-Based Glass-Ceramics</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>51</volume><issue>3</issue><spage>1163</spage><epage>1168</epage><pages>1163-1168</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>A conventional melt quenching technique was used to successfully fabricate Mn 2 O 3 -doped willemite glass-ceramics (Zn 2 SiO 4 :Mn 3+ ) produced from the ZnO-SLS glasses. The results from XRD revealed that willemite crystallization is improved by increasing the sintering duration. It was revealed that, as the sintering duration progressed, the phase formation shifted from amorphous to α-Zn 2 SiO 4 crystal. In addition, the structural growth of willemite phases can be seen using FTIR spectroscopy. The results of UV-Vis spectroscopy indicated that the intense absorption occurs in the UV zone, with wavelengths ranging from 250 nm to 400 nm, while the optical band gap showed a decreasing trend from 3.61 eV to 2.52 eV. These results perfectly established that Mn 3+ dopant is potentially beneficial for producing willemite glass-ceramics for optoelectronic applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-021-09378-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6734-800X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2022-03, Vol.51 (3), p.1163-1168
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2625412717
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Crystallization
Crystals
Electronics and Microelectronics
Energy gap
Glass ceramics
Instrumentation
Materials Science
Optical and Electronic Materials
Optoelectronics
Original Research Article
Sintering
Solid State Physics
Spectrum analysis
Zinc oxide
Zinc silicates
title Influence of Sintering Duration on Crystal Phase and Optical Band Gap of Mn3+ -Doped Willemite-Based Glass-Ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Sintering%20Duration%20on%20Crystal%20Phase%20and%20Optical%20Band%20Gap%20of%20Mn3+%20-Doped%20Willemite-Based%20Glass-Ceramics&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wei,%20L.%20Z.&rft.date=2022-03-01&rft.volume=51&rft.issue=3&rft.spage=1163&rft.epage=1168&rft.pages=1163-1168&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-021-09378-6&rft_dat=%3Cproquest_cross%3E2625412717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625412717&rft_id=info:pmid/&rfr_iscdi=true