Performant, Multi-Objective Scheduling of Highly Interleaved Task Graphs on Heterogeneous System on Chip Devices

Performance-, power-, and energy-aware scheduling techniques play an essential role in optimally utilizing processing elements (PEs) of heterogeneous systems. List schedulers, a class of low-complexity static schedulers, have commonly been used in static execution scenarios. However, list schedulers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2022-09, Vol.33 (9), p.2148-2162
Hauptverfasser: Mack, Joshua, Arda, Samet E., Ogras, Umit Y., Akoglu, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2162
container_issue 9
container_start_page 2148
container_title IEEE transactions on parallel and distributed systems
container_volume 33
creator Mack, Joshua
Arda, Samet E.
Ogras, Umit Y.
Akoglu, Ali
description Performance-, power-, and energy-aware scheduling techniques play an essential role in optimally utilizing processing elements (PEs) of heterogeneous systems. List schedulers, a class of low-complexity static schedulers, have commonly been used in static execution scenarios. However, list schedulers are not suitable for runtime decision making, particularly when multiple concurrent applications are interleaved dynamically. For such cases, the static task execution times and expectation of idle PEs assumed by list schedulers lead to inefficient system utilization and poor performance. To address this problem, we present techniques for optimizing execution of list scheduling algorithms in dynamic runtime scenarios via a family of algorithms inspired by the well-known heterogeneous earliest finish time (HEFT) list scheduler. Through dynamically arriving, realistic workload scenarios that are simulated in an open-source discrete event heterogeneous SoC simulator, we exhaustively evaluate each of the proposed algorithms across two SoCs modeled after the Xilinx Zynq Ultrascale+ ZCU102 and O-Droid XU3 development boards. Altogether, depending on the chosen variant in this family of algorithms, we are able to achieve an up to 39% execution time improvement, up to 7.24x algorithmic speedup, or up to 30% energy consumption improvement compared to the baseline HEFT implementation.
doi_str_mv 10.1109/TPDS.2021.3135876
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2625366379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9653796</ieee_id><sourcerecordid>2625366379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4992259e40e89bbdb62cbdcb2d6d84e1dad0470f2fe4bbd36365ffe9489687973</originalsourceid><addsrcrecordid>eNo9kEtLw0AQx4MoWKsfQLwseDV138kepdVWqLTQel7ymG22pkncTQr99ia0eJph_o-BXxA8EjwhBKvX7Xq2mVBMyYQRJuJIXgUjIkQcUhKz637HXISKEnUb3Hm_x5hwgfkoaNbgTO0OSdW-oK-ubG24SveQtfYIaJMVkHelrXaoNmhhd0V5Qp9VC66E5Ag52ib-B81d0hQe1RVaQC_VO6ig7jzanHwLh-E-LWyDZnC0Gfj74MYkpYeHyxwH3x_v2-kiXK7mn9O3ZZhRxdqQK0WpUMAxxCpN81TSLM2zlOYyjzmQPMkxj7ChBngvM8mkMAYUj5WMIxWxcfB87m1c_duBb_W-7lzVv9RUUsGkZJHqXeTsylztvQOjG2cPiTtpgvUAVg9g9QBWX8D2madzxgLAv19J0RdK9geib3Wh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625366379</pqid></control><display><type>article</type><title>Performant, Multi-Objective Scheduling of Highly Interleaved Task Graphs on Heterogeneous System on Chip Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Mack, Joshua ; Arda, Samet E. ; Ogras, Umit Y. ; Akoglu, Ali</creator><creatorcontrib>Mack, Joshua ; Arda, Samet E. ; Ogras, Umit Y. ; Akoglu, Ali</creatorcontrib><description>Performance-, power-, and energy-aware scheduling techniques play an essential role in optimally utilizing processing elements (PEs) of heterogeneous systems. List schedulers, a class of low-complexity static schedulers, have commonly been used in static execution scenarios. However, list schedulers are not suitable for runtime decision making, particularly when multiple concurrent applications are interleaved dynamically. For such cases, the static task execution times and expectation of idle PEs assumed by list schedulers lead to inefficient system utilization and poor performance. To address this problem, we present techniques for optimizing execution of list scheduling algorithms in dynamic runtime scenarios via a family of algorithms inspired by the well-known heterogeneous earliest finish time (HEFT) list scheduler. Through dynamically arriving, realistic workload scenarios that are simulated in an open-source discrete event heterogeneous SoC simulator, we exhaustively evaluate each of the proposed algorithms across two SoCs modeled after the Xilinx Zynq Ultrascale+ ZCU102 and O-Droid XU3 development boards. Altogether, depending on the chosen variant in this family of algorithms, we are able to achieve an up to 39% execution time improvement, up to 7.24x algorithmic speedup, or up to 30% energy consumption improvement compared to the baseline HEFT implementation.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2021.3135876</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Decision making ; Dynamic scheduling ; Energy consumption ; Energy management ; energy-aware systems ; hardware simulation ; HEFT ; heterogeneous (hybrid) systems ; Heuristic algorithms ; Multiple objective analysis ; Optimal scheduling ; Optimization ; Run time (computers) ; Runtime ; Schedules ; Scheduling algorithms ; Scheduling and task partitioning ; System on chip ; Task analysis ; Task scheduling</subject><ispartof>IEEE transactions on parallel and distributed systems, 2022-09, Vol.33 (9), p.2148-2162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4992259e40e89bbdb62cbdcb2d6d84e1dad0470f2fe4bbd36365ffe9489687973</citedby><cites>FETCH-LOGICAL-c293t-4992259e40e89bbdb62cbdcb2d6d84e1dad0470f2fe4bbd36365ffe9489687973</cites><orcidid>0000-0002-5045-5535 ; 0000-0003-1066-5578 ; 0000-0003-3269-7095 ; 0000-0001-7982-8991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9653796$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9653796$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mack, Joshua</creatorcontrib><creatorcontrib>Arda, Samet E.</creatorcontrib><creatorcontrib>Ogras, Umit Y.</creatorcontrib><creatorcontrib>Akoglu, Ali</creatorcontrib><title>Performant, Multi-Objective Scheduling of Highly Interleaved Task Graphs on Heterogeneous System on Chip Devices</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Performance-, power-, and energy-aware scheduling techniques play an essential role in optimally utilizing processing elements (PEs) of heterogeneous systems. List schedulers, a class of low-complexity static schedulers, have commonly been used in static execution scenarios. However, list schedulers are not suitable for runtime decision making, particularly when multiple concurrent applications are interleaved dynamically. For such cases, the static task execution times and expectation of idle PEs assumed by list schedulers lead to inefficient system utilization and poor performance. To address this problem, we present techniques for optimizing execution of list scheduling algorithms in dynamic runtime scenarios via a family of algorithms inspired by the well-known heterogeneous earliest finish time (HEFT) list scheduler. Through dynamically arriving, realistic workload scenarios that are simulated in an open-source discrete event heterogeneous SoC simulator, we exhaustively evaluate each of the proposed algorithms across two SoCs modeled after the Xilinx Zynq Ultrascale+ ZCU102 and O-Droid XU3 development boards. Altogether, depending on the chosen variant in this family of algorithms, we are able to achieve an up to 39% execution time improvement, up to 7.24x algorithmic speedup, or up to 30% energy consumption improvement compared to the baseline HEFT implementation.</description><subject>Algorithms</subject><subject>Decision making</subject><subject>Dynamic scheduling</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>energy-aware systems</subject><subject>hardware simulation</subject><subject>HEFT</subject><subject>heterogeneous (hybrid) systems</subject><subject>Heuristic algorithms</subject><subject>Multiple objective analysis</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Run time (computers)</subject><subject>Runtime</subject><subject>Schedules</subject><subject>Scheduling algorithms</subject><subject>Scheduling and task partitioning</subject><subject>System on chip</subject><subject>Task analysis</subject><subject>Task scheduling</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AQx4MoWKsfQLwseDV138kepdVWqLTQel7ymG22pkncTQr99ia0eJph_o-BXxA8EjwhBKvX7Xq2mVBMyYQRJuJIXgUjIkQcUhKz637HXISKEnUb3Hm_x5hwgfkoaNbgTO0OSdW-oK-ubG24SveQtfYIaJMVkHelrXaoNmhhd0V5Qp9VC66E5Ag52ib-B81d0hQe1RVaQC_VO6ig7jzanHwLh-E-LWyDZnC0Gfj74MYkpYeHyxwH3x_v2-kiXK7mn9O3ZZhRxdqQK0WpUMAxxCpN81TSLM2zlOYyjzmQPMkxj7ChBngvM8mkMAYUj5WMIxWxcfB87m1c_duBb_W-7lzVv9RUUsGkZJHqXeTsylztvQOjG2cPiTtpgvUAVg9g9QBWX8D2madzxgLAv19J0RdK9geib3Wh</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mack, Joshua</creator><creator>Arda, Samet E.</creator><creator>Ogras, Umit Y.</creator><creator>Akoglu, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5045-5535</orcidid><orcidid>https://orcid.org/0000-0003-1066-5578</orcidid><orcidid>https://orcid.org/0000-0003-3269-7095</orcidid><orcidid>https://orcid.org/0000-0001-7982-8991</orcidid></search><sort><creationdate>20220901</creationdate><title>Performant, Multi-Objective Scheduling of Highly Interleaved Task Graphs on Heterogeneous System on Chip Devices</title><author>Mack, Joshua ; Arda, Samet E. ; Ogras, Umit Y. ; Akoglu, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4992259e40e89bbdb62cbdcb2d6d84e1dad0470f2fe4bbd36365ffe9489687973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decision making</topic><topic>Dynamic scheduling</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>energy-aware systems</topic><topic>hardware simulation</topic><topic>HEFT</topic><topic>heterogeneous (hybrid) systems</topic><topic>Heuristic algorithms</topic><topic>Multiple objective analysis</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Run time (computers)</topic><topic>Runtime</topic><topic>Schedules</topic><topic>Scheduling algorithms</topic><topic>Scheduling and task partitioning</topic><topic>System on chip</topic><topic>Task analysis</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mack, Joshua</creatorcontrib><creatorcontrib>Arda, Samet E.</creatorcontrib><creatorcontrib>Ogras, Umit Y.</creatorcontrib><creatorcontrib>Akoglu, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mack, Joshua</au><au>Arda, Samet E.</au><au>Ogras, Umit Y.</au><au>Akoglu, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performant, Multi-Objective Scheduling of Highly Interleaved Task Graphs on Heterogeneous System on Chip Devices</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>33</volume><issue>9</issue><spage>2148</spage><epage>2162</epage><pages>2148-2162</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Performance-, power-, and energy-aware scheduling techniques play an essential role in optimally utilizing processing elements (PEs) of heterogeneous systems. List schedulers, a class of low-complexity static schedulers, have commonly been used in static execution scenarios. However, list schedulers are not suitable for runtime decision making, particularly when multiple concurrent applications are interleaved dynamically. For such cases, the static task execution times and expectation of idle PEs assumed by list schedulers lead to inefficient system utilization and poor performance. To address this problem, we present techniques for optimizing execution of list scheduling algorithms in dynamic runtime scenarios via a family of algorithms inspired by the well-known heterogeneous earliest finish time (HEFT) list scheduler. Through dynamically arriving, realistic workload scenarios that are simulated in an open-source discrete event heterogeneous SoC simulator, we exhaustively evaluate each of the proposed algorithms across two SoCs modeled after the Xilinx Zynq Ultrascale+ ZCU102 and O-Droid XU3 development boards. Altogether, depending on the chosen variant in this family of algorithms, we are able to achieve an up to 39% execution time improvement, up to 7.24x algorithmic speedup, or up to 30% energy consumption improvement compared to the baseline HEFT implementation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2021.3135876</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5045-5535</orcidid><orcidid>https://orcid.org/0000-0003-1066-5578</orcidid><orcidid>https://orcid.org/0000-0003-3269-7095</orcidid><orcidid>https://orcid.org/0000-0001-7982-8991</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2022-09, Vol.33 (9), p.2148-2162
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_2625366379
source IEEE Electronic Library (IEL)
subjects Algorithms
Decision making
Dynamic scheduling
Energy consumption
Energy management
energy-aware systems
hardware simulation
HEFT
heterogeneous (hybrid) systems
Heuristic algorithms
Multiple objective analysis
Optimal scheduling
Optimization
Run time (computers)
Runtime
Schedules
Scheduling algorithms
Scheduling and task partitioning
System on chip
Task analysis
Task scheduling
title Performant, Multi-Objective Scheduling of Highly Interleaved Task Graphs on Heterogeneous System on Chip Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performant,%20Multi-Objective%20Scheduling%20of%20Highly%20Interleaved%20Task%20Graphs%20on%20Heterogeneous%20System%20on%20Chip%20Devices&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Mack,%20Joshua&rft.date=2022-09-01&rft.volume=33&rft.issue=9&rft.spage=2148&rft.epage=2162&rft.pages=2148-2162&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2021.3135876&rft_dat=%3Cproquest_RIE%3E2625366379%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625366379&rft_id=info:pmid/&rft_ieee_id=9653796&rfr_iscdi=true