Semiparametrically efficient estimation of the average linear regression function
Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (f...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2022-01, Vol.226 (1), p.115-138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 115 |
container_title | Journal of econometrics |
container_volume | 226 |
creator | Graham, Bryan S. Pinto, Cristine Campos de Xavier |
description | Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (formally a conditional linear predictor). Let b0w be the coefficient vector on X in this regression. We introduce a semiparametrically efficient estimate of the average β0=Eb0W. When X is binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment effect(s). When X is continuously-valued, or consists of multiple non-exclusive treatments, our estimand coincides with the average partial effect (APE) of X on Y when the underlying potential response function is linear in X, but otherwise heterogeneous across agents. When the potential response function takes a general nonlinear/heterogeneous form, and X is continuously-valued, our procedure recovers a weighted average of the gradient of this response across individuals and values of X. We provide a simple, and semiparametrically efficient, method of covariate adjustment for settings with complicated treatment regimes. Our method generalizes familiar methods of covariate adjustment used for program evaluation as well as methods of semiparametric regression (e.g., the partially linear regression model). |
doi_str_mv | 10.1016/j.jeconom.2021.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625330832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407621001925</els_id><sourcerecordid>2625330832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-eb93782f019327008100445d98e27339d50edcb331760dd905edb658f494ca063</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKcfQSj43HqTtE36JDL8BwMR9Tlkye1MWZuZdIN9e1O2d5_uyznnnvMj5JZCQYHW913RofGD7wsGjBYgCgB5RmZUCpbXsqnOyQw4lHkJor4kVzF2AFCVks_Ixyf2bquD7nEMzujN5pBh2zrjcBgzjKPr9ej8kPk2G38w03sMeo3Zxg2oQxZwHTDGSdDuBjMpr8lFqzcRb053Tr6fn74Wr_ny_eVt8bjMTUnFmOOq4UKyFmjDmUiFKUBZVraRyATnja0ArVlxTkUN1jZQoV3VlWzLpjQaaj4nd8fcbfC_u9RUdX4XhvRSsZpVnIPkLKmqo8oEH2PAVm1DmhQOioKa6KlOneipiZ4CoVKZ5Hs4-jBN2DsMKk5IDFoX0IzKevdPwh-1zns6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625330832</pqid></control><display><type>article</type><title>Semiparametrically efficient estimation of the average linear regression function</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Graham, Bryan S. ; Pinto, Cristine Campos de Xavier</creator><creatorcontrib>Graham, Bryan S. ; Pinto, Cristine Campos de Xavier</creatorcontrib><description>Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (formally a conditional linear predictor). Let b0w be the coefficient vector on X in this regression. We introduce a semiparametrically efficient estimate of the average β0=Eb0W. When X is binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment effect(s). When X is continuously-valued, or consists of multiple non-exclusive treatments, our estimand coincides with the average partial effect (APE) of X on Y when the underlying potential response function is linear in X, but otherwise heterogeneous across agents. When the potential response function takes a general nonlinear/heterogeneous form, and X is continuously-valued, our procedure recovers a weighted average of the gradient of this response across individuals and values of X. We provide a simple, and semiparametrically efficient, method of covariate adjustment for settings with complicated treatment regimes. Our method generalizes familiar methods of covariate adjustment used for program evaluation as well as methods of semiparametric regression (e.g., the partially linear regression model).</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2021.07.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adjustment ; Average treatment effect ; Averages ; Causal inference ; Conditional linear predictor ; Estimating techniques ; Program evaluation ; Propensity score ; Regression analysis ; Semiparametric efficiency ; Semiparametric regression ; Variables</subject><ispartof>Journal of econometrics, 2022-01, Vol.226 (1), p.115-138</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-eb93782f019327008100445d98e27339d50edcb331760dd905edb658f494ca063</citedby><cites>FETCH-LOGICAL-c417t-eb93782f019327008100445d98e27339d50edcb331760dd905edb658f494ca063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2021.07.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Graham, Bryan S.</creatorcontrib><creatorcontrib>Pinto, Cristine Campos de Xavier</creatorcontrib><title>Semiparametrically efficient estimation of the average linear regression function</title><title>Journal of econometrics</title><description>Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (formally a conditional linear predictor). Let b0w be the coefficient vector on X in this regression. We introduce a semiparametrically efficient estimate of the average β0=Eb0W. When X is binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment effect(s). When X is continuously-valued, or consists of multiple non-exclusive treatments, our estimand coincides with the average partial effect (APE) of X on Y when the underlying potential response function is linear in X, but otherwise heterogeneous across agents. When the potential response function takes a general nonlinear/heterogeneous form, and X is continuously-valued, our procedure recovers a weighted average of the gradient of this response across individuals and values of X. We provide a simple, and semiparametrically efficient, method of covariate adjustment for settings with complicated treatment regimes. Our method generalizes familiar methods of covariate adjustment used for program evaluation as well as methods of semiparametric regression (e.g., the partially linear regression model).</description><subject>Adjustment</subject><subject>Average treatment effect</subject><subject>Averages</subject><subject>Causal inference</subject><subject>Conditional linear predictor</subject><subject>Estimating techniques</subject><subject>Program evaluation</subject><subject>Propensity score</subject><subject>Regression analysis</subject><subject>Semiparametric efficiency</subject><subject>Semiparametric regression</subject><subject>Variables</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKcfQSj43HqTtE36JDL8BwMR9Tlkye1MWZuZdIN9e1O2d5_uyznnnvMj5JZCQYHW913RofGD7wsGjBYgCgB5RmZUCpbXsqnOyQw4lHkJor4kVzF2AFCVks_Ixyf2bquD7nEMzujN5pBh2zrjcBgzjKPr9ej8kPk2G38w03sMeo3Zxg2oQxZwHTDGSdDuBjMpr8lFqzcRb053Tr6fn74Wr_ny_eVt8bjMTUnFmOOq4UKyFmjDmUiFKUBZVraRyATnja0ArVlxTkUN1jZQoV3VlWzLpjQaaj4nd8fcbfC_u9RUdX4XhvRSsZpVnIPkLKmqo8oEH2PAVm1DmhQOioKa6KlOneipiZ4CoVKZ5Hs4-jBN2DsMKk5IDFoX0IzKevdPwh-1zns6</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Graham, Bryan S.</creator><creator>Pinto, Cristine Campos de Xavier</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202201</creationdate><title>Semiparametrically efficient estimation of the average linear regression function</title><author>Graham, Bryan S. ; Pinto, Cristine Campos de Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-eb93782f019327008100445d98e27339d50edcb331760dd905edb658f494ca063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adjustment</topic><topic>Average treatment effect</topic><topic>Averages</topic><topic>Causal inference</topic><topic>Conditional linear predictor</topic><topic>Estimating techniques</topic><topic>Program evaluation</topic><topic>Propensity score</topic><topic>Regression analysis</topic><topic>Semiparametric efficiency</topic><topic>Semiparametric regression</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, Bryan S.</creatorcontrib><creatorcontrib>Pinto, Cristine Campos de Xavier</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, Bryan S.</au><au>Pinto, Cristine Campos de Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametrically efficient estimation of the average linear regression function</atitle><jtitle>Journal of econometrics</jtitle><date>2022-01</date><risdate>2022</risdate><volume>226</volume><issue>1</issue><spage>115</spage><epage>138</epage><pages>115-138</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (formally a conditional linear predictor). Let b0w be the coefficient vector on X in this regression. We introduce a semiparametrically efficient estimate of the average β0=Eb0W. When X is binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment effect(s). When X is continuously-valued, or consists of multiple non-exclusive treatments, our estimand coincides with the average partial effect (APE) of X on Y when the underlying potential response function is linear in X, but otherwise heterogeneous across agents. When the potential response function takes a general nonlinear/heterogeneous form, and X is continuously-valued, our procedure recovers a weighted average of the gradient of this response across individuals and values of X. We provide a simple, and semiparametrically efficient, method of covariate adjustment for settings with complicated treatment regimes. Our method generalizes familiar methods of covariate adjustment used for program evaluation as well as methods of semiparametric regression (e.g., the partially linear regression model).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2021.07.008</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2022-01, Vol.226 (1), p.115-138 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2625330832 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Adjustment Average treatment effect Averages Causal inference Conditional linear predictor Estimating techniques Program evaluation Propensity score Regression analysis Semiparametric efficiency Semiparametric regression Variables |
title | Semiparametrically efficient estimation of the average linear regression function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametrically%20efficient%20estimation%20of%20the%20average%20linear%20regression%20function&rft.jtitle=Journal%20of%20econometrics&rft.au=Graham,%20Bryan%20S.&rft.date=2022-01&rft.volume=226&rft.issue=1&rft.spage=115&rft.epage=138&rft.pages=115-138&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2021.07.008&rft_dat=%3Cproquest_cross%3E2625330832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625330832&rft_id=info:pmid/&rft_els_id=S0304407621001925&rfr_iscdi=true |