Semiparametrically efficient estimation of the average linear regression function

Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2022-01, Vol.226 (1), p.115-138
Hauptverfasser: Graham, Bryan S., Pinto, Cristine Campos de Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 115
container_title Journal of econometrics
container_volume 226
creator Graham, Bryan S.
Pinto, Cristine Campos de Xavier
description Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (formally a conditional linear predictor). Let b0w be the coefficient vector on X in this regression. We introduce a semiparametrically efficient estimate of the average β0=Eb0W. When X is binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment effect(s). When X is continuously-valued, or consists of multiple non-exclusive treatments, our estimand coincides with the average partial effect (APE) of X on Y when the underlying potential response function is linear in X, but otherwise heterogeneous across agents. When the potential response function takes a general nonlinear/heterogeneous form, and X is continuously-valued, our procedure recovers a weighted average of the gradient of this response across individuals and values of X. We provide a simple, and semiparametrically efficient, method of covariate adjustment for settings with complicated treatment regimes. Our method generalizes familiar methods of covariate adjustment used for program evaluation as well as methods of semiparametric regression (e.g., the partially linear regression model).
doi_str_mv 10.1016/j.jeconom.2021.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625330832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407621001925</els_id><sourcerecordid>2625330832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-eb93782f019327008100445d98e27339d50edcb331760dd905edb658f494ca063</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKcfQSj43HqTtE36JDL8BwMR9Tlkye1MWZuZdIN9e1O2d5_uyznnnvMj5JZCQYHW913RofGD7wsGjBYgCgB5RmZUCpbXsqnOyQw4lHkJor4kVzF2AFCVks_Ixyf2bquD7nEMzujN5pBh2zrjcBgzjKPr9ej8kPk2G38w03sMeo3Zxg2oQxZwHTDGSdDuBjMpr8lFqzcRb053Tr6fn74Wr_ny_eVt8bjMTUnFmOOq4UKyFmjDmUiFKUBZVraRyATnja0ArVlxTkUN1jZQoV3VlWzLpjQaaj4nd8fcbfC_u9RUdX4XhvRSsZpVnIPkLKmqo8oEH2PAVm1DmhQOioKa6KlOneipiZ4CoVKZ5Hs4-jBN2DsMKk5IDFoX0IzKevdPwh-1zns6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625330832</pqid></control><display><type>article</type><title>Semiparametrically efficient estimation of the average linear regression function</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Graham, Bryan S. ; Pinto, Cristine Campos de Xavier</creator><creatorcontrib>Graham, Bryan S. ; Pinto, Cristine Campos de Xavier</creatorcontrib><description>Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (formally a conditional linear predictor). Let b0w be the coefficient vector on X in this regression. We introduce a semiparametrically efficient estimate of the average β0=Eb0W. When X is binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment effect(s). When X is continuously-valued, or consists of multiple non-exclusive treatments, our estimand coincides with the average partial effect (APE) of X on Y when the underlying potential response function is linear in X, but otherwise heterogeneous across agents. When the potential response function takes a general nonlinear/heterogeneous form, and X is continuously-valued, our procedure recovers a weighted average of the gradient of this response across individuals and values of X. We provide a simple, and semiparametrically efficient, method of covariate adjustment for settings with complicated treatment regimes. Our method generalizes familiar methods of covariate adjustment used for program evaluation as well as methods of semiparametric regression (e.g., the partially linear regression model).</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2021.07.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adjustment ; Average treatment effect ; Averages ; Causal inference ; Conditional linear predictor ; Estimating techniques ; Program evaluation ; Propensity score ; Regression analysis ; Semiparametric efficiency ; Semiparametric regression ; Variables</subject><ispartof>Journal of econometrics, 2022-01, Vol.226 (1), p.115-138</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-eb93782f019327008100445d98e27339d50edcb331760dd905edb658f494ca063</citedby><cites>FETCH-LOGICAL-c417t-eb93782f019327008100445d98e27339d50edcb331760dd905edb658f494ca063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2021.07.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Graham, Bryan S.</creatorcontrib><creatorcontrib>Pinto, Cristine Campos de Xavier</creatorcontrib><title>Semiparametrically efficient estimation of the average linear regression function</title><title>Journal of econometrics</title><description>Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (formally a conditional linear predictor). Let b0w be the coefficient vector on X in this regression. We introduce a semiparametrically efficient estimate of the average β0=Eb0W. When X is binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment effect(s). When X is continuously-valued, or consists of multiple non-exclusive treatments, our estimand coincides with the average partial effect (APE) of X on Y when the underlying potential response function is linear in X, but otherwise heterogeneous across agents. When the potential response function takes a general nonlinear/heterogeneous form, and X is continuously-valued, our procedure recovers a weighted average of the gradient of this response across individuals and values of X. We provide a simple, and semiparametrically efficient, method of covariate adjustment for settings with complicated treatment regimes. Our method generalizes familiar methods of covariate adjustment used for program evaluation as well as methods of semiparametric regression (e.g., the partially linear regression model).</description><subject>Adjustment</subject><subject>Average treatment effect</subject><subject>Averages</subject><subject>Causal inference</subject><subject>Conditional linear predictor</subject><subject>Estimating techniques</subject><subject>Program evaluation</subject><subject>Propensity score</subject><subject>Regression analysis</subject><subject>Semiparametric efficiency</subject><subject>Semiparametric regression</subject><subject>Variables</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKcfQSj43HqTtE36JDL8BwMR9Tlkye1MWZuZdIN9e1O2d5_uyznnnvMj5JZCQYHW913RofGD7wsGjBYgCgB5RmZUCpbXsqnOyQw4lHkJor4kVzF2AFCVks_Ixyf2bquD7nEMzujN5pBh2zrjcBgzjKPr9ej8kPk2G38w03sMeo3Zxg2oQxZwHTDGSdDuBjMpr8lFqzcRb053Tr6fn74Wr_ny_eVt8bjMTUnFmOOq4UKyFmjDmUiFKUBZVraRyATnja0ArVlxTkUN1jZQoV3VlWzLpjQaaj4nd8fcbfC_u9RUdX4XhvRSsZpVnIPkLKmqo8oEH2PAVm1DmhQOioKa6KlOneipiZ4CoVKZ5Hs4-jBN2DsMKk5IDFoX0IzKevdPwh-1zns6</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Graham, Bryan S.</creator><creator>Pinto, Cristine Campos de Xavier</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202201</creationdate><title>Semiparametrically efficient estimation of the average linear regression function</title><author>Graham, Bryan S. ; Pinto, Cristine Campos de Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-eb93782f019327008100445d98e27339d50edcb331760dd905edb658f494ca063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adjustment</topic><topic>Average treatment effect</topic><topic>Averages</topic><topic>Causal inference</topic><topic>Conditional linear predictor</topic><topic>Estimating techniques</topic><topic>Program evaluation</topic><topic>Propensity score</topic><topic>Regression analysis</topic><topic>Semiparametric efficiency</topic><topic>Semiparametric regression</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, Bryan S.</creatorcontrib><creatorcontrib>Pinto, Cristine Campos de Xavier</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, Bryan S.</au><au>Pinto, Cristine Campos de Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametrically efficient estimation of the average linear regression function</atitle><jtitle>Journal of econometrics</jtitle><date>2022-01</date><risdate>2022</risdate><volume>226</volume><issue>1</issue><spage>115</spage><epage>138</epage><pages>115-138</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation homogeneous in W=w (formally a conditional linear predictor). Let b0w be the coefficient vector on X in this regression. We introduce a semiparametrically efficient estimate of the average β0=Eb0W. When X is binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment effect(s). When X is continuously-valued, or consists of multiple non-exclusive treatments, our estimand coincides with the average partial effect (APE) of X on Y when the underlying potential response function is linear in X, but otherwise heterogeneous across agents. When the potential response function takes a general nonlinear/heterogeneous form, and X is continuously-valued, our procedure recovers a weighted average of the gradient of this response across individuals and values of X. We provide a simple, and semiparametrically efficient, method of covariate adjustment for settings with complicated treatment regimes. Our method generalizes familiar methods of covariate adjustment used for program evaluation as well as methods of semiparametric regression (e.g., the partially linear regression model).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2021.07.008</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2022-01, Vol.226 (1), p.115-138
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2625330832
source ScienceDirect Journals (5 years ago - present)
subjects Adjustment
Average treatment effect
Averages
Causal inference
Conditional linear predictor
Estimating techniques
Program evaluation
Propensity score
Regression analysis
Semiparametric efficiency
Semiparametric regression
Variables
title Semiparametrically efficient estimation of the average linear regression function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametrically%20efficient%20estimation%20of%20the%20average%20linear%20regression%20function&rft.jtitle=Journal%20of%20econometrics&rft.au=Graham,%20Bryan%20S.&rft.date=2022-01&rft.volume=226&rft.issue=1&rft.spage=115&rft.epage=138&rft.pages=115-138&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2021.07.008&rft_dat=%3Cproquest_cross%3E2625330832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625330832&rft_id=info:pmid/&rft_els_id=S0304407621001925&rfr_iscdi=true