Axiomatic Definition of Small Cancellation Rings
In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation proper...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2021-09, Vol.104 (2), p.234-239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 2 |
container_start_page | 234 |
container_title | Doklady. Mathematics |
container_volume | 104 |
creator | Atkarskaya, A. Kanel-Belov, A. Plotkin, E. Rips, E. |
description | In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring. |
doi_str_mv | 10.1134/S1064562421050197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625297118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625297118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-48e7d38080ad49a807f62720816d4da5bf28a3a976684720821089342cd875a3</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3gKeozP7zrFErUJBsL2HNdmULcmm7qag_96tETyIpxm-1wwfIdcIt4iM360RJBeScoogAAt1QmYoGOaaSXqa9kTnR_6cXMS4A-CCAswILD7c0JvR1dm9bZ13oxt8NrTZujddl5XG17brzDf66vw2XpKz1nTRXv3MOdk8PmzKp3z1snwuF6u8xkKPOddWNUyDBtPwwmhQraSKgkbZ8MaIt5Zqw0yhpNT8iKe_dcE4rRuthGFzcjPF7sPwfrBxrHbDIfh0saKSClooRJ1UOKnqMMQYbFvtg-tN-KwQqmMv1Z9ekodOnpi0fmvDb_L_pi_3KGEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625297118</pqid></control><display><type>article</type><title>Axiomatic Definition of Small Cancellation Rings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Atkarskaya, A. ; Kanel-Belov, A. ; Plotkin, E. ; Rips, E.</creator><creatorcontrib>Atkarskaya, A. ; Kanel-Belov, A. ; Plotkin, E. ; Rips, E.</creatorcontrib><description>In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562421050197</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Axioms ; Cancellation ; Group theory ; Mathematics ; Mathematics and Statistics ; Quotients</subject><ispartof>Doklady. Mathematics, 2021-09, Vol.104 (2), p.234-239</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1064-5624, Doklady Mathematics, 2021, Vol. 104, No. 2, pp. 234–239. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2021, Vol. 500, pp. 16–22.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-48e7d38080ad49a807f62720816d4da5bf28a3a976684720821089342cd875a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562421050197$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562421050197$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Atkarskaya, A.</creatorcontrib><creatorcontrib>Kanel-Belov, A.</creatorcontrib><creatorcontrib>Plotkin, E.</creatorcontrib><creatorcontrib>Rips, E.</creatorcontrib><title>Axiomatic Definition of Small Cancellation Rings</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.</description><subject>Axioms</subject><subject>Cancellation</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quotients</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWv0B3gKeozP7zrFErUJBsL2HNdmULcmm7qag_96tETyIpxm-1wwfIdcIt4iM360RJBeScoogAAt1QmYoGOaaSXqa9kTnR_6cXMS4A-CCAswILD7c0JvR1dm9bZ13oxt8NrTZujddl5XG17brzDf66vw2XpKz1nTRXv3MOdk8PmzKp3z1snwuF6u8xkKPOddWNUyDBtPwwmhQraSKgkbZ8MaIt5Zqw0yhpNT8iKe_dcE4rRuthGFzcjPF7sPwfrBxrHbDIfh0saKSClooRJ1UOKnqMMQYbFvtg-tN-KwQqmMv1Z9ekodOnpi0fmvDb_L_pi_3KGEg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Atkarskaya, A.</creator><creator>Kanel-Belov, A.</creator><creator>Plotkin, E.</creator><creator>Rips, E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Axiomatic Definition of Small Cancellation Rings</title><author>Atkarskaya, A. ; Kanel-Belov, A. ; Plotkin, E. ; Rips, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-48e7d38080ad49a807f62720816d4da5bf28a3a976684720821089342cd875a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axioms</topic><topic>Cancellation</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atkarskaya, A.</creatorcontrib><creatorcontrib>Kanel-Belov, A.</creatorcontrib><creatorcontrib>Plotkin, E.</creatorcontrib><creatorcontrib>Rips, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atkarskaya, A.</au><au>Kanel-Belov, A.</au><au>Plotkin, E.</au><au>Rips, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axiomatic Definition of Small Cancellation Rings</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>104</volume><issue>2</issue><spage>234</spage><epage>239</epage><pages>234-239</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562421050197</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2021-09, Vol.104 (2), p.234-239 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2625297118 |
source | SpringerLink Journals - AutoHoldings |
subjects | Axioms Cancellation Group theory Mathematics Mathematics and Statistics Quotients |
title | Axiomatic Definition of Small Cancellation Rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axiomatic%20Definition%20of%20Small%20Cancellation%20Rings&rft.jtitle=Doklady.%20Mathematics&rft.au=Atkarskaya,%20A.&rft.date=2021-09-01&rft.volume=104&rft.issue=2&rft.spage=234&rft.epage=239&rft.pages=234-239&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562421050197&rft_dat=%3Cproquest_cross%3E2625297118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625297118&rft_id=info:pmid/&rfr_iscdi=true |