Axiomatic Definition of Small Cancellation Rings

In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2021-09, Vol.104 (2), p.234-239
Hauptverfasser: Atkarskaya, A., Kanel-Belov, A., Plotkin, E., Rips, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 2
container_start_page 234
container_title Doklady. Mathematics
container_volume 104
creator Atkarskaya, A.
Kanel-Belov, A.
Plotkin, E.
Rips, E.
description In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.
doi_str_mv 10.1134/S1064562421050197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625297118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625297118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-48e7d38080ad49a807f62720816d4da5bf28a3a976684720821089342cd875a3</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3gKeozP7zrFErUJBsL2HNdmULcmm7qag_96tETyIpxm-1wwfIdcIt4iM360RJBeScoogAAt1QmYoGOaaSXqa9kTnR_6cXMS4A-CCAswILD7c0JvR1dm9bZ13oxt8NrTZujddl5XG17brzDf66vw2XpKz1nTRXv3MOdk8PmzKp3z1snwuF6u8xkKPOddWNUyDBtPwwmhQraSKgkbZ8MaIt5Zqw0yhpNT8iKe_dcE4rRuthGFzcjPF7sPwfrBxrHbDIfh0saKSClooRJ1UOKnqMMQYbFvtg-tN-KwQqmMv1Z9ekodOnpi0fmvDb_L_pi_3KGEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625297118</pqid></control><display><type>article</type><title>Axiomatic Definition of Small Cancellation Rings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Atkarskaya, A. ; Kanel-Belov, A. ; Plotkin, E. ; Rips, E.</creator><creatorcontrib>Atkarskaya, A. ; Kanel-Belov, A. ; Plotkin, E. ; Rips, E.</creatorcontrib><description>In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562421050197</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Axioms ; Cancellation ; Group theory ; Mathematics ; Mathematics and Statistics ; Quotients</subject><ispartof>Doklady. Mathematics, 2021-09, Vol.104 (2), p.234-239</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1064-5624, Doklady Mathematics, 2021, Vol. 104, No. 2, pp. 234–239. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2021, Vol. 500, pp. 16–22.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-48e7d38080ad49a807f62720816d4da5bf28a3a976684720821089342cd875a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562421050197$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562421050197$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Atkarskaya, A.</creatorcontrib><creatorcontrib>Kanel-Belov, A.</creatorcontrib><creatorcontrib>Plotkin, E.</creatorcontrib><creatorcontrib>Rips, E.</creatorcontrib><title>Axiomatic Definition of Small Cancellation Rings</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.</description><subject>Axioms</subject><subject>Cancellation</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quotients</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWv0B3gKeozP7zrFErUJBsL2HNdmULcmm7qag_96tETyIpxm-1wwfIdcIt4iM360RJBeScoogAAt1QmYoGOaaSXqa9kTnR_6cXMS4A-CCAswILD7c0JvR1dm9bZ13oxt8NrTZujddl5XG17brzDf66vw2XpKz1nTRXv3MOdk8PmzKp3z1snwuF6u8xkKPOddWNUyDBtPwwmhQraSKgkbZ8MaIt5Zqw0yhpNT8iKe_dcE4rRuthGFzcjPF7sPwfrBxrHbDIfh0saKSClooRJ1UOKnqMMQYbFvtg-tN-KwQqmMv1Z9ekodOnpi0fmvDb_L_pi_3KGEg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Atkarskaya, A.</creator><creator>Kanel-Belov, A.</creator><creator>Plotkin, E.</creator><creator>Rips, E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Axiomatic Definition of Small Cancellation Rings</title><author>Atkarskaya, A. ; Kanel-Belov, A. ; Plotkin, E. ; Rips, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-48e7d38080ad49a807f62720816d4da5bf28a3a976684720821089342cd875a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axioms</topic><topic>Cancellation</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atkarskaya, A.</creatorcontrib><creatorcontrib>Kanel-Belov, A.</creatorcontrib><creatorcontrib>Plotkin, E.</creatorcontrib><creatorcontrib>Rips, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atkarskaya, A.</au><au>Kanel-Belov, A.</au><au>Plotkin, E.</au><au>Rips, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axiomatic Definition of Small Cancellation Rings</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>104</volume><issue>2</issue><spage>234</spage><epage>239</epage><pages>234-239</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562421050197</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2021-09, Vol.104 (2), p.234-239
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_2625297118
source SpringerLink Journals - AutoHoldings
subjects Axioms
Cancellation
Group theory
Mathematics
Mathematics and Statistics
Quotients
title Axiomatic Definition of Small Cancellation Rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axiomatic%20Definition%20of%20Small%20Cancellation%20Rings&rft.jtitle=Doklady.%20Mathematics&rft.au=Atkarskaya,%20A.&rft.date=2021-09-01&rft.volume=104&rft.issue=2&rft.spage=234&rft.epage=239&rft.pages=234-239&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562421050197&rft_dat=%3Cproquest_cross%3E2625297118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625297118&rft_id=info:pmid/&rfr_iscdi=true