Numerical simulation of S355JR-316L dissimilar metal welding
Considering the thermophysical properties of materials and the latent heat of phase change, the temperature field, HAZ microstructure evolution, residual stress and post-weld deformation of S355JR-316L dissimilar metals were numerically simulated using SYSWELD software and verified by experiments. A...
Gespeichert in:
Veröffentlicht in: | Welding in the world 2022-02, Vol.66 (2), p.287-299 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 2 |
container_start_page | 287 |
container_title | Welding in the world |
container_volume | 66 |
creator | Huang, Bensheng Fang, Ziyi Yang, Jiang Zheng, Jianneng Wang, Shuibo |
description | Considering the thermophysical properties of materials and the latent heat of phase change, the temperature field, HAZ microstructure evolution, residual stress and post-weld deformation of S355JR-316L dissimilar metals were numerically simulated using SYSWELD software and verified by experiments. After welding, the phase transition only occurs on the HAZ side of S355JR, in which the maximum content of martensite is 9.8%, the maximum content of residual austenite is 0.3%, and the remaining is bainite. Along the weld direction, the longitudinal and transverse residual stresses of S355JR and 316L appear near the weld centerline. The maximum longitudinal residual stress is 410 MPa, and 310 MPa, respectively, and the maximum transverse residual stress is 204 MPa, and 188 MPa, respectively. The overall deformation of the welded joint is V-shaped symmetrical with respect to the weld centerline. The deformation of S355JR is smaller than that of 316L, and the maximum edge deformation is 3.1 mm. The result of angular deformation is 4.1°. The overall deformation and angular deformation of welded joints welded with dissimilar steel are greater than those welded with the same steel. |
doi_str_mv | 10.1007/s40194-021-01200-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625297077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625297077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-23cdc51034db6c88e4576fa2c17f5d33691b67f8459d7f171afd1e9070c87b9a3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKsG19FK0nmBGxl8Mij4WId0Ohl66MeYdCP-vdEW3LkoalHn3oKD0CmBcwIgL1IJRJcYKMFAKADme2hBlFRYCKH30QKgZJhSpQ7RUUpbANB5Fujycep8bJxti9R0U2vHZuiLIRQvjPOHZ8yIWBd1k_KxaW0sOj9m9MO3ddNvjtFBsG3yJ797id5url9Xd3j9dHu_ulpjx4geMWWudpwAK-tKOKV8yaUIljoiA68ZE5pUQgZVcl3LQCSxoSZegwSnZKUtW6KzuXcXh_fJp9Fshyn2-aWhgnKqJUiZKTpTLg4pRR_MLjadjZ-GgPm2ZGZLJlsyP5YMzyE2h1KG-42Pf9X_pL4ALs1n3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625297077</pqid></control><display><type>article</type><title>Numerical simulation of S355JR-316L dissimilar metal welding</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Bensheng ; Fang, Ziyi ; Yang, Jiang ; Zheng, Jianneng ; Wang, Shuibo</creator><creatorcontrib>Huang, Bensheng ; Fang, Ziyi ; Yang, Jiang ; Zheng, Jianneng ; Wang, Shuibo</creatorcontrib><description>Considering the thermophysical properties of materials and the latent heat of phase change, the temperature field, HAZ microstructure evolution, residual stress and post-weld deformation of S355JR-316L dissimilar metals were numerically simulated using SYSWELD software and verified by experiments. After welding, the phase transition only occurs on the HAZ side of S355JR, in which the maximum content of martensite is 9.8%, the maximum content of residual austenite is 0.3%, and the remaining is bainite. Along the weld direction, the longitudinal and transverse residual stresses of S355JR and 316L appear near the weld centerline. The maximum longitudinal residual stress is 410 MPa, and 310 MPa, respectively, and the maximum transverse residual stress is 204 MPa, and 188 MPa, respectively. The overall deformation of the welded joint is V-shaped symmetrical with respect to the weld centerline. The deformation of S355JR is smaller than that of 316L, and the maximum edge deformation is 3.1 mm. The result of angular deformation is 4.1°. The overall deformation and angular deformation of welded joints welded with dissimilar steel are greater than those welded with the same steel.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-021-01200-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bainite ; Chemistry and Materials Science ; Deformation ; Dissimilar materials ; Dissimilar metals ; Heat affected zone ; Latent heat ; Martensite ; Material properties ; Materials Science ; Metallic Materials ; Phase transitions ; Research Paper ; Residual stress ; Retained austenite ; Solid Mechanics ; Temperature distribution ; Theoretical and Applied Mechanics ; Thermophysical properties ; Welded joints ; Welding</subject><ispartof>Welding in the world, 2022-02, Vol.66 (2), p.287-299</ispartof><rights>International Institute of Welding 2021</rights><rights>International Institute of Welding 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-23cdc51034db6c88e4576fa2c17f5d33691b67f8459d7f171afd1e9070c87b9a3</citedby><cites>FETCH-LOGICAL-c319t-23cdc51034db6c88e4576fa2c17f5d33691b67f8459d7f171afd1e9070c87b9a3</cites><orcidid>0000-0002-6255-7408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-021-01200-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-021-01200-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Huang, Bensheng</creatorcontrib><creatorcontrib>Fang, Ziyi</creatorcontrib><creatorcontrib>Yang, Jiang</creatorcontrib><creatorcontrib>Zheng, Jianneng</creatorcontrib><creatorcontrib>Wang, Shuibo</creatorcontrib><title>Numerical simulation of S355JR-316L dissimilar metal welding</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Considering the thermophysical properties of materials and the latent heat of phase change, the temperature field, HAZ microstructure evolution, residual stress and post-weld deformation of S355JR-316L dissimilar metals were numerically simulated using SYSWELD software and verified by experiments. After welding, the phase transition only occurs on the HAZ side of S355JR, in which the maximum content of martensite is 9.8%, the maximum content of residual austenite is 0.3%, and the remaining is bainite. Along the weld direction, the longitudinal and transverse residual stresses of S355JR and 316L appear near the weld centerline. The maximum longitudinal residual stress is 410 MPa, and 310 MPa, respectively, and the maximum transverse residual stress is 204 MPa, and 188 MPa, respectively. The overall deformation of the welded joint is V-shaped symmetrical with respect to the weld centerline. The deformation of S355JR is smaller than that of 316L, and the maximum edge deformation is 3.1 mm. The result of angular deformation is 4.1°. The overall deformation and angular deformation of welded joints welded with dissimilar steel are greater than those welded with the same steel.</description><subject>Bainite</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Dissimilar materials</subject><subject>Dissimilar metals</subject><subject>Heat affected zone</subject><subject>Latent heat</subject><subject>Martensite</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Phase transitions</subject><subject>Research Paper</subject><subject>Residual stress</subject><subject>Retained austenite</subject><subject>Solid Mechanics</subject><subject>Temperature distribution</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermophysical properties</subject><subject>Welded joints</subject><subject>Welding</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOI7-gKsG19FK0nmBGxl8Mij4WId0Ohl66MeYdCP-vdEW3LkoalHn3oKD0CmBcwIgL1IJRJcYKMFAKADme2hBlFRYCKH30QKgZJhSpQ7RUUpbANB5Fujycep8bJxti9R0U2vHZuiLIRQvjPOHZ8yIWBd1k_KxaW0sOj9m9MO3ddNvjtFBsG3yJ797id5url9Xd3j9dHu_ulpjx4geMWWudpwAK-tKOKV8yaUIljoiA68ZE5pUQgZVcl3LQCSxoSZegwSnZKUtW6KzuXcXh_fJp9Fshyn2-aWhgnKqJUiZKTpTLg4pRR_MLjadjZ-GgPm2ZGZLJlsyP5YMzyE2h1KG-42Pf9X_pL4ALs1n3g</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Huang, Bensheng</creator><creator>Fang, Ziyi</creator><creator>Yang, Jiang</creator><creator>Zheng, Jianneng</creator><creator>Wang, Shuibo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6255-7408</orcidid></search><sort><creationdate>20220201</creationdate><title>Numerical simulation of S355JR-316L dissimilar metal welding</title><author>Huang, Bensheng ; Fang, Ziyi ; Yang, Jiang ; Zheng, Jianneng ; Wang, Shuibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-23cdc51034db6c88e4576fa2c17f5d33691b67f8459d7f171afd1e9070c87b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bainite</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Dissimilar materials</topic><topic>Dissimilar metals</topic><topic>Heat affected zone</topic><topic>Latent heat</topic><topic>Martensite</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Phase transitions</topic><topic>Research Paper</topic><topic>Residual stress</topic><topic>Retained austenite</topic><topic>Solid Mechanics</topic><topic>Temperature distribution</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermophysical properties</topic><topic>Welded joints</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Bensheng</creatorcontrib><creatorcontrib>Fang, Ziyi</creatorcontrib><creatorcontrib>Yang, Jiang</creatorcontrib><creatorcontrib>Zheng, Jianneng</creatorcontrib><creatorcontrib>Wang, Shuibo</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Bensheng</au><au>Fang, Ziyi</au><au>Yang, Jiang</au><au>Zheng, Jianneng</au><au>Wang, Shuibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of S355JR-316L dissimilar metal welding</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>66</volume><issue>2</issue><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Considering the thermophysical properties of materials and the latent heat of phase change, the temperature field, HAZ microstructure evolution, residual stress and post-weld deformation of S355JR-316L dissimilar metals were numerically simulated using SYSWELD software and verified by experiments. After welding, the phase transition only occurs on the HAZ side of S355JR, in which the maximum content of martensite is 9.8%, the maximum content of residual austenite is 0.3%, and the remaining is bainite. Along the weld direction, the longitudinal and transverse residual stresses of S355JR and 316L appear near the weld centerline. The maximum longitudinal residual stress is 410 MPa, and 310 MPa, respectively, and the maximum transverse residual stress is 204 MPa, and 188 MPa, respectively. The overall deformation of the welded joint is V-shaped symmetrical with respect to the weld centerline. The deformation of S355JR is smaller than that of 316L, and the maximum edge deformation is 3.1 mm. The result of angular deformation is 4.1°. The overall deformation and angular deformation of welded joints welded with dissimilar steel are greater than those welded with the same steel.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-021-01200-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6255-7408</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-2288 |
ispartof | Welding in the world, 2022-02, Vol.66 (2), p.287-299 |
issn | 0043-2288 1878-6669 |
language | eng |
recordid | cdi_proquest_journals_2625297077 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bainite Chemistry and Materials Science Deformation Dissimilar materials Dissimilar metals Heat affected zone Latent heat Martensite Material properties Materials Science Metallic Materials Phase transitions Research Paper Residual stress Retained austenite Solid Mechanics Temperature distribution Theoretical and Applied Mechanics Thermophysical properties Welded joints Welding |
title | Numerical simulation of S355JR-316L dissimilar metal welding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20S355JR-316L%20dissimilar%20metal%20welding&rft.jtitle=Welding%20in%20the%20world&rft.au=Huang,%20Bensheng&rft.date=2022-02-01&rft.volume=66&rft.issue=2&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-021-01200-5&rft_dat=%3Cproquest_cross%3E2625297077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625297077&rft_id=info:pmid/&rfr_iscdi=true |