Three-Tangle of Three-Qubit Werner States Using Symmetry
We use the symmetry of three-qubit Werner states to compute analytically the three-party entanglement measure known as three-tangle for these states. The computation shows that three-qubit Werner states have vanishing three-tangle. Also the optimal pure-state decompositions realizing the vanishing t...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2022, Vol.61 (1), Article 12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of theoretical physics |
container_volume | 61 |
creator | Akbari-Kourbolagh, Y. Shahhoseini, E. |
description | We use the symmetry of three-qubit Werner states to compute analytically the three-party entanglement measure known as three-tangle for these states. The computation shows that three-qubit Werner states have vanishing three-tangle. Also the optimal pure-state decompositions realizing the vanishing three-tangle are found. Moreover, the Coffman-Kundu-Wootters inequality is checked by computing one-tangle and concurrences of Werner states. It is found that the one-tangle is always greater than the sum of squared concurrences and three-tangle. |
doi_str_mv | 10.1007/s10773-022-05002-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2625297050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625297050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-6f791ef32b3bb5b0003144a658423425ba36a5743898218e0ffea6a085a42e313</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hkkmyyRyl-QUGkLR5DtkzWLe1uTbaH_nujK3jzNMzwfjAPY9cCbgWAuUsCjJEcEDloAOTyhE2ENsgrbfQpm-QbcGOUPWcXKW0AoAJlJ8wuPyIRX_qu2VLRh2Lc3w51OxTvFDuKxWLwA6VildquKRbH3Y6GeLxkZ8FvE139zilbPT4sZ898_vr0Mruf8zUCDLwMphIUJNayrnWde6VQypfaKpQKde1l6bVR0lYWhSUIgXzpwWqvkKSQU3Yz5u5j_3mgNLhNf4hdrnRYosbK5IezCkfVOvYpRQpuH9udj0cnwH0TciMhlwm5H0JOZpMcTSmLu4biX_Q_ri9dAGY6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625297050</pqid></control><display><type>article</type><title>Three-Tangle of Three-Qubit Werner States Using Symmetry</title><source>Springer Nature - Complete Springer Journals</source><creator>Akbari-Kourbolagh, Y. ; Shahhoseini, E.</creator><creatorcontrib>Akbari-Kourbolagh, Y. ; Shahhoseini, E.</creatorcontrib><description>We use the symmetry of three-qubit Werner states to compute analytically the three-party entanglement measure known as three-tangle for these states. The computation shows that three-qubit Werner states have vanishing three-tangle. Also the optimal pure-state decompositions realizing the vanishing three-tangle are found. Moreover, the Coffman-Kundu-Wootters inequality is checked by computing one-tangle and concurrences of Werner states. It is found that the one-tangle is always greater than the sum of squared concurrences and three-tangle.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-022-05002-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Elementary Particles ; Entanglement ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Symmetry ; Theoretical</subject><ispartof>International journal of theoretical physics, 2022, Vol.61 (1), Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-6f791ef32b3bb5b0003144a658423425ba36a5743898218e0ffea6a085a42e313</cites><orcidid>0000-0002-3327-6586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-022-05002-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-022-05002-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Akbari-Kourbolagh, Y.</creatorcontrib><creatorcontrib>Shahhoseini, E.</creatorcontrib><title>Three-Tangle of Three-Qubit Werner States Using Symmetry</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>We use the symmetry of three-qubit Werner states to compute analytically the three-party entanglement measure known as three-tangle for these states. The computation shows that three-qubit Werner states have vanishing three-tangle. Also the optimal pure-state decompositions realizing the vanishing three-tangle are found. Moreover, the Coffman-Kundu-Wootters inequality is checked by computing one-tangle and concurrences of Werner states. It is found that the one-tangle is always greater than the sum of squared concurrences and three-tangle.</description><subject>Elementary Particles</subject><subject>Entanglement</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Symmetry</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hkkmyyRyl-QUGkLR5DtkzWLe1uTbaH_nujK3jzNMzwfjAPY9cCbgWAuUsCjJEcEDloAOTyhE2ENsgrbfQpm-QbcGOUPWcXKW0AoAJlJ8wuPyIRX_qu2VLRh2Lc3w51OxTvFDuKxWLwA6VildquKRbH3Y6GeLxkZ8FvE139zilbPT4sZ898_vr0Mruf8zUCDLwMphIUJNayrnWde6VQypfaKpQKde1l6bVR0lYWhSUIgXzpwWqvkKSQU3Yz5u5j_3mgNLhNf4hdrnRYosbK5IezCkfVOvYpRQpuH9udj0cnwH0TciMhlwm5H0JOZpMcTSmLu4biX_Q_ri9dAGY6</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Akbari-Kourbolagh, Y.</creator><creator>Shahhoseini, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3327-6586</orcidid></search><sort><creationdate>2022</creationdate><title>Three-Tangle of Three-Qubit Werner States Using Symmetry</title><author>Akbari-Kourbolagh, Y. ; Shahhoseini, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-6f791ef32b3bb5b0003144a658423425ba36a5743898218e0ffea6a085a42e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Elementary Particles</topic><topic>Entanglement</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Symmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari-Kourbolagh, Y.</creatorcontrib><creatorcontrib>Shahhoseini, E.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari-Kourbolagh, Y.</au><au>Shahhoseini, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Tangle of Three-Qubit Werner States Using Symmetry</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2022</date><risdate>2022</risdate><volume>61</volume><issue>1</issue><artnum>12</artnum><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>We use the symmetry of three-qubit Werner states to compute analytically the three-party entanglement measure known as three-tangle for these states. The computation shows that three-qubit Werner states have vanishing three-tangle. Also the optimal pure-state decompositions realizing the vanishing three-tangle are found. Moreover, the Coffman-Kundu-Wootters inequality is checked by computing one-tangle and concurrences of Werner states. It is found that the one-tangle is always greater than the sum of squared concurrences and three-tangle.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-022-05002-3</doi><orcidid>https://orcid.org/0000-0002-3327-6586</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | International journal of theoretical physics, 2022, Vol.61 (1), Article 12 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_proquest_journals_2625297050 |
source | Springer Nature - Complete Springer Journals |
subjects | Elementary Particles Entanglement Mathematical and Computational Physics Physics Physics and Astronomy Quantum Field Theory Quantum Physics Symmetry Theoretical |
title | Three-Tangle of Three-Qubit Werner States Using Symmetry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Tangle%20of%20Three-Qubit%20Werner%20States%20Using%20Symmetry&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Akbari-Kourbolagh,%20Y.&rft.date=2022&rft.volume=61&rft.issue=1&rft.artnum=12&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-022-05002-3&rft_dat=%3Cproquest_cross%3E2625297050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625297050&rft_id=info:pmid/&rfr_iscdi=true |