Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting

Toward the goal of more rapid knowledge accumulation via better meta-analyses, this article explores statistical approaches intended to increase the precision and comparability of effect sizes from education research. The featured estimate of the proposed approach is a standardized mean difference e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Educational Researcher 2022-01, Vol.51 (1), p.72-80
Hauptverfasser: Taylor, Joseph A., Pigott, Terri, Williams, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 72
container_title Educational Researcher
container_volume 51
creator Taylor, Joseph A.
Pigott, Terri
Williams, Ryan
description Toward the goal of more rapid knowledge accumulation via better meta-analyses, this article explores statistical approaches intended to increase the precision and comparability of effect sizes from education research. The featured estimate of the proposed approach is a standardized mean difference effect size whose numerator is a mean difference that has been adjusted for baseline differences in the outcome measure, at a minimum, and whose denominator is the total variance. The article describes the utility and efficiency of covariate adjustment through baseline measures and the need to standardize effects on a total variance that accounts for variation at multiple levels. As computation of the total variance can be complex in multilevel studies, a shiny application is provided to assist with computation of the total variance and subsequent effect size. Examples are provided for how to interpret and input the required calculator inputs.
doi_str_mv 10.3102/0013189X211051319
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624889276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1328553</ericid><sage_id>10.3102_0013189X211051319</sage_id><sourcerecordid>2624889276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c3ab99c49f73bc8d65c5d5cd681be8d183bef03c475e1741fff7698887a808233</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOF4ewIUQcD1j0jRt6m6Q8TqgeAF3JU1PxkqnqUnqZZ7DBza1ogtxk-Tk__7_HA5Ce5RMGCXRISGUUZE9RJQSHp7ZGhrRjPFxEB_W0ajXxz2wibaceyKE8DgSI_Rxbc3S-KpZ4MvGvNZQLgBPleqWXS19ZRo8LUzn8Xnjwb5A8_U10xqUd0d49tbWxvbmW2-lh0UFDmtjQymbUtqyWg1iiHK-UrLG07a1RqrHAAbkOwrfVivAN9Aa24-ygza0rB3sft_b6P5kdnd8Np5fnZ4fT-djxVjswymLLFNxplNWKFEmXPGSqzIRtABRUsEK0ISpOOVA05hqrdMkE0KkUhARMbaNDobcMNJzB87nT6azTWiZR0kUC5FFaRIoOlDKGucs6Ly11VLa95ySvF9-_mf5wbM_eMBW6oefXVAWCc77zpNBd3IBv13_D_wE3e2RFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624889276</pqid></control><display><type>article</type><title>Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting</title><source>SAGE Complete</source><creator>Taylor, Joseph A. ; Pigott, Terri ; Williams, Ryan</creator><creatorcontrib>Taylor, Joseph A. ; Pigott, Terri ; Williams, Ryan</creatorcontrib><description>Toward the goal of more rapid knowledge accumulation via better meta-analyses, this article explores statistical approaches intended to increase the precision and comparability of effect sizes from education research. The featured estimate of the proposed approach is a standardized mean difference effect size whose numerator is a mean difference that has been adjusted for baseline differences in the outcome measure, at a minimum, and whose denominator is the total variance. The article describes the utility and efficiency of covariate adjustment through baseline measures and the need to standardize effects on a total variance that accounts for variation at multiple levels. As computation of the total variance can be complex in multilevel studies, a shiny application is provided to assist with computation of the total variance and subsequent effect size. Examples are provided for how to interpret and input the required calculator inputs.</description><identifier>ISSN: 0013-189X</identifier><identifier>EISSN: 1935-102X</identifier><identifier>DOI: 10.3102/0013189X211051319</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Comparative Analysis ; Education policy ; Educational evaluation ; Educational Research ; Effect Size ; Intervention ; Meta Analysis ; Outcome Measures ; Quasi-experimental methods ; Research Reports ; Statistical Analysis</subject><ispartof>Educational Researcher, 2022-01, Vol.51 (1), p.72-80</ispartof><rights>2021 AERA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c3ab99c49f73bc8d65c5d5cd681be8d183bef03c475e1741fff7698887a808233</citedby><cites>FETCH-LOGICAL-c334t-c3ab99c49f73bc8d65c5d5cd681be8d183bef03c475e1741fff7698887a808233</cites><orcidid>0000-0002-3753-4888 ; 0000-0002-5976-246X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.3102/0013189X211051319$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.3102/0013189X211051319$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,776,780,788,4010,21798,27899,27900,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1328553$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Joseph A.</creatorcontrib><creatorcontrib>Pigott, Terri</creatorcontrib><creatorcontrib>Williams, Ryan</creatorcontrib><title>Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting</title><title>Educational Researcher</title><description>Toward the goal of more rapid knowledge accumulation via better meta-analyses, this article explores statistical approaches intended to increase the precision and comparability of effect sizes from education research. The featured estimate of the proposed approach is a standardized mean difference effect size whose numerator is a mean difference that has been adjusted for baseline differences in the outcome measure, at a minimum, and whose denominator is the total variance. The article describes the utility and efficiency of covariate adjustment through baseline measures and the need to standardize effects on a total variance that accounts for variation at multiple levels. As computation of the total variance can be complex in multilevel studies, a shiny application is provided to assist with computation of the total variance and subsequent effect size. Examples are provided for how to interpret and input the required calculator inputs.</description><subject>Comparative Analysis</subject><subject>Education policy</subject><subject>Educational evaluation</subject><subject>Educational Research</subject><subject>Effect Size</subject><subject>Intervention</subject><subject>Meta Analysis</subject><subject>Outcome Measures</subject><subject>Quasi-experimental methods</subject><subject>Research Reports</subject><subject>Statistical Analysis</subject><issn>0013-189X</issn><issn>1935-102X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOF4ewIUQcD1j0jRt6m6Q8TqgeAF3JU1PxkqnqUnqZZ7DBza1ogtxk-Tk__7_HA5Ce5RMGCXRISGUUZE9RJQSHp7ZGhrRjPFxEB_W0ajXxz2wibaceyKE8DgSI_Rxbc3S-KpZ4MvGvNZQLgBPleqWXS19ZRo8LUzn8Xnjwb5A8_U10xqUd0d49tbWxvbmW2-lh0UFDmtjQymbUtqyWg1iiHK-UrLG07a1RqrHAAbkOwrfVivAN9Aa24-ygza0rB3sft_b6P5kdnd8Np5fnZ4fT-djxVjswymLLFNxplNWKFEmXPGSqzIRtABRUsEK0ISpOOVA05hqrdMkE0KkUhARMbaNDobcMNJzB87nT6azTWiZR0kUC5FFaRIoOlDKGucs6Ly11VLa95ySvF9-_mf5wbM_eMBW6oefXVAWCc77zpNBd3IBv13_D_wE3e2RFA</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Taylor, Joseph A.</creator><creator>Pigott, Terri</creator><creator>Williams, Ryan</creator><general>SAGE Publications</general><general>American Educational Research Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3753-4888</orcidid><orcidid>https://orcid.org/0000-0002-5976-246X</orcidid></search><sort><creationdate>202201</creationdate><title>Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting</title><author>Taylor, Joseph A. ; Pigott, Terri ; Williams, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c3ab99c49f73bc8d65c5d5cd681be8d183bef03c475e1741fff7698887a808233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Comparative Analysis</topic><topic>Education policy</topic><topic>Educational evaluation</topic><topic>Educational Research</topic><topic>Effect Size</topic><topic>Intervention</topic><topic>Meta Analysis</topic><topic>Outcome Measures</topic><topic>Quasi-experimental methods</topic><topic>Research Reports</topic><topic>Statistical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Joseph A.</creatorcontrib><creatorcontrib>Pigott, Terri</creatorcontrib><creatorcontrib>Williams, Ryan</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Educational Researcher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Joseph A.</au><au>Pigott, Terri</au><au>Williams, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1328553</ericid><atitle>Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting</atitle><jtitle>Educational Researcher</jtitle><date>2022-01</date><risdate>2022</risdate><volume>51</volume><issue>1</issue><spage>72</spage><epage>80</epage><pages>72-80</pages><issn>0013-189X</issn><eissn>1935-102X</eissn><abstract>Toward the goal of more rapid knowledge accumulation via better meta-analyses, this article explores statistical approaches intended to increase the precision and comparability of effect sizes from education research. The featured estimate of the proposed approach is a standardized mean difference effect size whose numerator is a mean difference that has been adjusted for baseline differences in the outcome measure, at a minimum, and whose denominator is the total variance. The article describes the utility and efficiency of covariate adjustment through baseline measures and the need to standardize effects on a total variance that accounts for variation at multiple levels. As computation of the total variance can be complex in multilevel studies, a shiny application is provided to assist with computation of the total variance and subsequent effect size. Examples are provided for how to interpret and input the required calculator inputs.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3102/0013189X211051319</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3753-4888</orcidid><orcidid>https://orcid.org/0000-0002-5976-246X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-189X
ispartof Educational Researcher, 2022-01, Vol.51 (1), p.72-80
issn 0013-189X
1935-102X
language eng
recordid cdi_proquest_journals_2624889276
source SAGE Complete
subjects Comparative Analysis
Education policy
Educational evaluation
Educational Research
Effect Size
Intervention
Meta Analysis
Outcome Measures
Quasi-experimental methods
Research Reports
Statistical Analysis
title Promoting Knowledge Accumulation About Intervention Effects: Exploring Strategies for Standardizing Statistical Approaches and Effect Size Reporting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promoting%20Knowledge%20Accumulation%20About%20Intervention%20Effects:%20Exploring%20Strategies%20for%20Standardizing%20Statistical%20Approaches%20and%20Effect%20Size%20Reporting&rft.jtitle=Educational%20Researcher&rft.au=Taylor,%20Joseph%20A.&rft.date=2022-01&rft.volume=51&rft.issue=1&rft.spage=72&rft.epage=80&rft.pages=72-80&rft.issn=0013-189X&rft.eissn=1935-102X&rft_id=info:doi/10.3102/0013189X211051319&rft_dat=%3Cproquest_cross%3E2624889276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624889276&rft_id=info:pmid/&rft_ericid=EJ1328553&rft_sage_id=10.3102_0013189X211051319&rfr_iscdi=true