Nanoscale Mapping of Cu‐Ion Transport in van der Waals Layered CuCrP2S6

Ionic conduction of metal thiophosphates (MTPs) is attracting growing attention for promising applications in electrochemical storage and tunable physical properties. Especially, metal‐ion migration in copper thiophosphate has been identified as a key factor for the control of their microstructure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2022-02, Vol.9 (4), p.n/a
Hauptverfasser: Ma, Ru‐Ru, Xu, Dong‐Dong, Zhong, Qi‐Lan, Zhong, Chao‐Rong, Huang, Rong, Xiang, Ping‐Hua, Zhong, Ni, Duan, Chun‐Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced materials interfaces
container_volume 9
creator Ma, Ru‐Ru
Xu, Dong‐Dong
Zhong, Qi‐Lan
Zhong, Chao‐Rong
Huang, Rong
Xiang, Ping‐Hua
Zhong, Ni
Duan, Chun‐Gang
description Ionic conduction of metal thiophosphates (MTPs) is attracting growing attention for promising applications in electrochemical storage and tunable physical properties. Especially, metal‐ion migration in copper thiophosphate has been identified as a key factor for the control of their microstructure and phase transition. However, direct evidence for the coupling between Cu‐ion motions and the crystal lattice has been elusive at the nanometer scale. Here, the room temperature diffusion kinetics of Cu ions in layered CuCrP2S6 (CCPS) is demonstrated. A tip‐enhanced electric field based on scanning probe microscopy (SPM) has been used as the driving force for Cu‐ion motions through van der Waals gaps. The strong coupling between Cu‐ion concentration and crystal lattice and the resulting serial structural transitions have been probed directly by the comprehensive utilization of spatially resolved Raman spectra, cross‐section energy dispersion spectrum (EDS), and high‐resolution transmission electron microscopy (HR‐TEM). This knowledge improves the understanding of the effect of intrinsic Cu‐ion migration on the structure transformation in layered van der Waals materials and provides feedback to the nanoscale mechanisms of nanometer devices based on iontronics. The intrinsic ionic conductivity and the strong coupling between Cu‐ion concentration and crystal lattice in layered CuCrP2S6 have been probed directly at a resolution of nanometers.
doi_str_mv 10.1002/admi.202101769
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2624873608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624873608</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2339-6f3147a1ce1ca735e0cdf01ad3e331f0921256cec8e5671e5ed882f8c8a542403</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNRePS94Tp3ZTTabY4kfDbQqWPG4LJuJpLSbuGmV3vwJ_kZ_iSmV4mk-eJh5eRi7RBgjgLi25boeCxAImKrshA0EZipKZQKn__pzNuq6JQAgChRaDljxYH3TObsiPrdtW_s33lQ83_58fReN54tgfdc2YcNrzz-s5yUF_mrtquMzu6NAZc_m4Uk8qwt2VvV7Gv3VIXu5u13k02j2eF_kk1nUCimzSFUS49SiI3S2z0TgygrQlpKkxAqyPliiHDlNiUqREiq1FpV22iaxiEEO2dXhbhua9y11G7NstsH3L41QItapVKB7KjtQn_WKdqYN9dqGnUEwe11mr8scdZnJzbw4TvIXAFVfNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624873608</pqid></control><display><type>article</type><title>Nanoscale Mapping of Cu‐Ion Transport in van der Waals Layered CuCrP2S6</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Ru‐Ru ; Xu, Dong‐Dong ; Zhong, Qi‐Lan ; Zhong, Chao‐Rong ; Huang, Rong ; Xiang, Ping‐Hua ; Zhong, Ni ; Duan, Chun‐Gang</creator><creatorcontrib>Ma, Ru‐Ru ; Xu, Dong‐Dong ; Zhong, Qi‐Lan ; Zhong, Chao‐Rong ; Huang, Rong ; Xiang, Ping‐Hua ; Zhong, Ni ; Duan, Chun‐Gang</creatorcontrib><description>Ionic conduction of metal thiophosphates (MTPs) is attracting growing attention for promising applications in electrochemical storage and tunable physical properties. Especially, metal‐ion migration in copper thiophosphate has been identified as a key factor for the control of their microstructure and phase transition. However, direct evidence for the coupling between Cu‐ion motions and the crystal lattice has been elusive at the nanometer scale. Here, the room temperature diffusion kinetics of Cu ions in layered CuCrP2S6 (CCPS) is demonstrated. A tip‐enhanced electric field based on scanning probe microscopy (SPM) has been used as the driving force for Cu‐ion motions through van der Waals gaps. The strong coupling between Cu‐ion concentration and crystal lattice and the resulting serial structural transitions have been probed directly by the comprehensive utilization of spatially resolved Raman spectra, cross‐section energy dispersion spectrum (EDS), and high‐resolution transmission electron microscopy (HR‐TEM). This knowledge improves the understanding of the effect of intrinsic Cu‐ion migration on the structure transformation in layered van der Waals materials and provides feedback to the nanoscale mechanisms of nanometer devices based on iontronics. The intrinsic ionic conductivity and the strong coupling between Cu‐ion concentration and crystal lattice in layered CuCrP2S6 have been probed directly at a resolution of nanometers.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202101769</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Copper ; Coupling ; Crystal lattices ; Crystal structure ; CuCrP 2S 6 ; Diffusion layers ; Electric fields ; Ion concentration ; Ion migration ; Ion transport ; ionic conductivity ; Microscopy ; Phase transitions ; Physical properties ; Raman spectra ; Room temperature ; scanning probe microscope ; Scanning probe microscopy ; structural phase transition ; van der Waals layered materials</subject><ispartof>Advanced materials interfaces, 2022-02, Vol.9 (4), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6875-4007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202101769$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202101769$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ma, Ru‐Ru</creatorcontrib><creatorcontrib>Xu, Dong‐Dong</creatorcontrib><creatorcontrib>Zhong, Qi‐Lan</creatorcontrib><creatorcontrib>Zhong, Chao‐Rong</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Xiang, Ping‐Hua</creatorcontrib><creatorcontrib>Zhong, Ni</creatorcontrib><creatorcontrib>Duan, Chun‐Gang</creatorcontrib><title>Nanoscale Mapping of Cu‐Ion Transport in van der Waals Layered CuCrP2S6</title><title>Advanced materials interfaces</title><description>Ionic conduction of metal thiophosphates (MTPs) is attracting growing attention for promising applications in electrochemical storage and tunable physical properties. Especially, metal‐ion migration in copper thiophosphate has been identified as a key factor for the control of their microstructure and phase transition. However, direct evidence for the coupling between Cu‐ion motions and the crystal lattice has been elusive at the nanometer scale. Here, the room temperature diffusion kinetics of Cu ions in layered CuCrP2S6 (CCPS) is demonstrated. A tip‐enhanced electric field based on scanning probe microscopy (SPM) has been used as the driving force for Cu‐ion motions through van der Waals gaps. The strong coupling between Cu‐ion concentration and crystal lattice and the resulting serial structural transitions have been probed directly by the comprehensive utilization of spatially resolved Raman spectra, cross‐section energy dispersion spectrum (EDS), and high‐resolution transmission electron microscopy (HR‐TEM). This knowledge improves the understanding of the effect of intrinsic Cu‐ion migration on the structure transformation in layered van der Waals materials and provides feedback to the nanoscale mechanisms of nanometer devices based on iontronics. The intrinsic ionic conductivity and the strong coupling between Cu‐ion concentration and crystal lattice in layered CuCrP2S6 have been probed directly at a resolution of nanometers.</description><subject>Copper</subject><subject>Coupling</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>CuCrP 2S 6</subject><subject>Diffusion layers</subject><subject>Electric fields</subject><subject>Ion concentration</subject><subject>Ion migration</subject><subject>Ion transport</subject><subject>ionic conductivity</subject><subject>Microscopy</subject><subject>Phase transitions</subject><subject>Physical properties</subject><subject>Raman spectra</subject><subject>Room temperature</subject><subject>scanning probe microscope</subject><subject>Scanning probe microscopy</subject><subject>structural phase transition</subject><subject>van der Waals layered materials</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsNRePS94Tp3ZTTabY4kfDbQqWPG4LJuJpLSbuGmV3vwJ_kZ_iSmV4mk-eJh5eRi7RBgjgLi25boeCxAImKrshA0EZipKZQKn__pzNuq6JQAgChRaDljxYH3TObsiPrdtW_s33lQ83_58fReN54tgfdc2YcNrzz-s5yUF_mrtquMzu6NAZc_m4Uk8qwt2VvV7Gv3VIXu5u13k02j2eF_kk1nUCimzSFUS49SiI3S2z0TgygrQlpKkxAqyPliiHDlNiUqREiq1FpV22iaxiEEO2dXhbhua9y11G7NstsH3L41QItapVKB7KjtQn_WKdqYN9dqGnUEwe11mr8scdZnJzbw4TvIXAFVfNw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ma, Ru‐Ru</creator><creator>Xu, Dong‐Dong</creator><creator>Zhong, Qi‐Lan</creator><creator>Zhong, Chao‐Rong</creator><creator>Huang, Rong</creator><creator>Xiang, Ping‐Hua</creator><creator>Zhong, Ni</creator><creator>Duan, Chun‐Gang</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6875-4007</orcidid></search><sort><creationdate>20220201</creationdate><title>Nanoscale Mapping of Cu‐Ion Transport in van der Waals Layered CuCrP2S6</title><author>Ma, Ru‐Ru ; Xu, Dong‐Dong ; Zhong, Qi‐Lan ; Zhong, Chao‐Rong ; Huang, Rong ; Xiang, Ping‐Hua ; Zhong, Ni ; Duan, Chun‐Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2339-6f3147a1ce1ca735e0cdf01ad3e331f0921256cec8e5671e5ed882f8c8a542403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Copper</topic><topic>Coupling</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>CuCrP 2S 6</topic><topic>Diffusion layers</topic><topic>Electric fields</topic><topic>Ion concentration</topic><topic>Ion migration</topic><topic>Ion transport</topic><topic>ionic conductivity</topic><topic>Microscopy</topic><topic>Phase transitions</topic><topic>Physical properties</topic><topic>Raman spectra</topic><topic>Room temperature</topic><topic>scanning probe microscope</topic><topic>Scanning probe microscopy</topic><topic>structural phase transition</topic><topic>van der Waals layered materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Ru‐Ru</creatorcontrib><creatorcontrib>Xu, Dong‐Dong</creatorcontrib><creatorcontrib>Zhong, Qi‐Lan</creatorcontrib><creatorcontrib>Zhong, Chao‐Rong</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Xiang, Ping‐Hua</creatorcontrib><creatorcontrib>Zhong, Ni</creatorcontrib><creatorcontrib>Duan, Chun‐Gang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Ru‐Ru</au><au>Xu, Dong‐Dong</au><au>Zhong, Qi‐Lan</au><au>Zhong, Chao‐Rong</au><au>Huang, Rong</au><au>Xiang, Ping‐Hua</au><au>Zhong, Ni</au><au>Duan, Chun‐Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Mapping of Cu‐Ion Transport in van der Waals Layered CuCrP2S6</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Ionic conduction of metal thiophosphates (MTPs) is attracting growing attention for promising applications in electrochemical storage and tunable physical properties. Especially, metal‐ion migration in copper thiophosphate has been identified as a key factor for the control of their microstructure and phase transition. However, direct evidence for the coupling between Cu‐ion motions and the crystal lattice has been elusive at the nanometer scale. Here, the room temperature diffusion kinetics of Cu ions in layered CuCrP2S6 (CCPS) is demonstrated. A tip‐enhanced electric field based on scanning probe microscopy (SPM) has been used as the driving force for Cu‐ion motions through van der Waals gaps. The strong coupling between Cu‐ion concentration and crystal lattice and the resulting serial structural transitions have been probed directly by the comprehensive utilization of spatially resolved Raman spectra, cross‐section energy dispersion spectrum (EDS), and high‐resolution transmission electron microscopy (HR‐TEM). This knowledge improves the understanding of the effect of intrinsic Cu‐ion migration on the structure transformation in layered van der Waals materials and provides feedback to the nanoscale mechanisms of nanometer devices based on iontronics. The intrinsic ionic conductivity and the strong coupling between Cu‐ion concentration and crystal lattice in layered CuCrP2S6 have been probed directly at a resolution of nanometers.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.202101769</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6875-4007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2022-02, Vol.9 (4), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2624873608
source Wiley Online Library Journals Frontfile Complete
subjects Copper
Coupling
Crystal lattices
Crystal structure
CuCrP 2S 6
Diffusion layers
Electric fields
Ion concentration
Ion migration
Ion transport
ionic conductivity
Microscopy
Phase transitions
Physical properties
Raman spectra
Room temperature
scanning probe microscope
Scanning probe microscopy
structural phase transition
van der Waals layered materials
title Nanoscale Mapping of Cu‐Ion Transport in van der Waals Layered CuCrP2S6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Mapping%20of%20Cu%E2%80%90Ion%20Transport%20in%20van%20der%20Waals%20Layered%20CuCrP2S6&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Ma,%20Ru%E2%80%90Ru&rft.date=2022-02-01&rft.volume=9&rft.issue=4&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202101769&rft_dat=%3Cproquest_wiley%3E2624873608%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624873608&rft_id=info:pmid/&rfr_iscdi=true