In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides

The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2022-02, Vol.9 (4), p.n/a
Hauptverfasser: Ghafari, Amir Mohammad, Domínguez, Sergio E., Järvinen, Ville, Gounani, Zahra, Schmit, Amandine, Sjöqvist, Marika, Sahlgren, Cecilia, Salo‐Ahen, Outi M. H., Kvarnström, Carita, Torsi, Luisa, Österbacka, Ronald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced materials interfaces
container_volume 9
creator Ghafari, Amir Mohammad
Domínguez, Sergio E.
Järvinen, Ville
Gounani, Zahra
Schmit, Amandine
Sjöqvist, Marika
Sahlgren, Cecilia
Salo‐Ahen, Outi M. H.
Kvarnström, Carita
Torsi, Luisa
Österbacka, Ronald
description The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive self‐assembled monolayer (SAM) with specially designed charged peptides is used as a model system to switch between two separate hydrophilic states. The underwater contact angle (UCA) technique is used to measure changes in the wetting property of a dichloromethane droplet under electrical stimuli. The observed changes in the UCA of the bio‐interface can be understood in terms of a change in the surface energy between the ON and OFF states. Molecular dynamics simulations in an electric field have been performed to verify the hypothesis of the orientational change of the charged peptides upon electrical stimulation. In addition, X‐ray photoelectron spectroscopy (XPS) is performed to clarify the stability of the functionalized electrodes. Finally, the possibility of using such a novel switching system as a tool to characterize bioactive surfaces is discussed. Optical tensiometry is used to measure the conformational change of bio‐surfaces consisting of charged peptides switching between two conformations under an applied electrical potential. The different hydrophilicity of the surface is measured, and the surface energy differences between the ON and OFF states explain the observed contact angle changes of the bio‐interface.
doi_str_mv 10.1002/admi.202101480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624873147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624873147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-3e422fa48ed391a487dc31e834b103dd3d98a87022cf9e33a6318c812eb08c7d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EElXplbMlzin-SRvnWJVSKhWBoJwt1960Lkkc7ATUG4_AM_IkJCoCbpxmVppvtBqEzikZUkLYpTKFHTLCKKGxIEeox2g6jhI-Isd__CkahLAjhFDKKBO8h54XJX60dYOnrqlyMHiWg66901sorFb55_vH3JXWFVD7PVYBK7xyLse1ww_wCipvwTJzvlC1dWV3blW5gYBd1lm_aSvvoaqtgXCGTjKVBxh8ax89Xc9W05toeTdfTCfLSPNRQiIOMWOZigUYntJWE6M5BcHjNSXcGG5SoURCGNNZCpyrMadCC8pgTYRODO-ji0Nv5d1LA6GWO9f49rkg2Zi1fZzGSZsaHlLauxA8ZLLytlB-LymR3aay21T-bNoC6QF4szns_0nLydXt4pf9Am3le2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624873147</pqid></control><display><type>article</type><title>In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghafari, Amir Mohammad ; Domínguez, Sergio E. ; Järvinen, Ville ; Gounani, Zahra ; Schmit, Amandine ; Sjöqvist, Marika ; Sahlgren, Cecilia ; Salo‐Ahen, Outi M. H. ; Kvarnström, Carita ; Torsi, Luisa ; Österbacka, Ronald</creator><creatorcontrib>Ghafari, Amir Mohammad ; Domínguez, Sergio E. ; Järvinen, Ville ; Gounani, Zahra ; Schmit, Amandine ; Sjöqvist, Marika ; Sahlgren, Cecilia ; Salo‐Ahen, Outi M. H. ; Kvarnström, Carita ; Torsi, Luisa ; Österbacka, Ronald</creatorcontrib><description>The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive self‐assembled monolayer (SAM) with specially designed charged peptides is used as a model system to switch between two separate hydrophilic states. The underwater contact angle (UCA) technique is used to measure changes in the wetting property of a dichloromethane droplet under electrical stimuli. The observed changes in the UCA of the bio‐interface can be understood in terms of a change in the surface energy between the ON and OFF states. Molecular dynamics simulations in an electric field have been performed to verify the hypothesis of the orientational change of the charged peptides upon electrical stimulation. In addition, X‐ray photoelectron spectroscopy (XPS) is performed to clarify the stability of the functionalized electrodes. Finally, the possibility of using such a novel switching system as a tool to characterize bioactive surfaces is discussed. Optical tensiometry is used to measure the conformational change of bio‐surfaces consisting of charged peptides switching between two conformations under an applied electrical potential. The different hydrophilicity of the surface is measured, and the surface energy differences between the ON and OFF states explain the observed contact angle changes of the bio‐interface.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202101480</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>bioactive surfaces ; bioelectronics ; Biological activity ; Contact angle ; Dichloromethane ; Electric contacts ; Electric fields ; Molecular dynamics ; Peptides ; Photoelectrons ; Stimuli ; Surface energy ; switchable interfaces ; Wetting</subject><ispartof>Advanced materials interfaces, 2022-02, Vol.9 (4), p.n/a</ispartof><rights>2021 Abo Akademi University. Advanced Materials Interfaces published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-3e422fa48ed391a487dc31e834b103dd3d98a87022cf9e33a6318c812eb08c7d3</citedby><cites>FETCH-LOGICAL-c3570-3e422fa48ed391a487dc31e834b103dd3d98a87022cf9e33a6318c812eb08c7d3</cites><orcidid>0000-0002-2157-683X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202101480$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202101480$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ghafari, Amir Mohammad</creatorcontrib><creatorcontrib>Domínguez, Sergio E.</creatorcontrib><creatorcontrib>Järvinen, Ville</creatorcontrib><creatorcontrib>Gounani, Zahra</creatorcontrib><creatorcontrib>Schmit, Amandine</creatorcontrib><creatorcontrib>Sjöqvist, Marika</creatorcontrib><creatorcontrib>Sahlgren, Cecilia</creatorcontrib><creatorcontrib>Salo‐Ahen, Outi M. H.</creatorcontrib><creatorcontrib>Kvarnström, Carita</creatorcontrib><creatorcontrib>Torsi, Luisa</creatorcontrib><creatorcontrib>Österbacka, Ronald</creatorcontrib><title>In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides</title><title>Advanced materials interfaces</title><description>The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive self‐assembled monolayer (SAM) with specially designed charged peptides is used as a model system to switch between two separate hydrophilic states. The underwater contact angle (UCA) technique is used to measure changes in the wetting property of a dichloromethane droplet under electrical stimuli. The observed changes in the UCA of the bio‐interface can be understood in terms of a change in the surface energy between the ON and OFF states. Molecular dynamics simulations in an electric field have been performed to verify the hypothesis of the orientational change of the charged peptides upon electrical stimulation. In addition, X‐ray photoelectron spectroscopy (XPS) is performed to clarify the stability of the functionalized electrodes. Finally, the possibility of using such a novel switching system as a tool to characterize bioactive surfaces is discussed. Optical tensiometry is used to measure the conformational change of bio‐surfaces consisting of charged peptides switching between two conformations under an applied electrical potential. The different hydrophilicity of the surface is measured, and the surface energy differences between the ON and OFF states explain the observed contact angle changes of the bio‐interface.</description><subject>bioactive surfaces</subject><subject>bioelectronics</subject><subject>Biological activity</subject><subject>Contact angle</subject><subject>Dichloromethane</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Molecular dynamics</subject><subject>Peptides</subject><subject>Photoelectrons</subject><subject>Stimuli</subject><subject>Surface energy</subject><subject>switchable interfaces</subject><subject>Wetting</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1OwzAQhC0EElXplbMlzin-SRvnWJVSKhWBoJwt1960Lkkc7ATUG4_AM_IkJCoCbpxmVppvtBqEzikZUkLYpTKFHTLCKKGxIEeox2g6jhI-Isd__CkahLAjhFDKKBO8h54XJX60dYOnrqlyMHiWg66901sorFb55_vH3JXWFVD7PVYBK7xyLse1ww_wCipvwTJzvlC1dWV3blW5gYBd1lm_aSvvoaqtgXCGTjKVBxh8ax89Xc9W05toeTdfTCfLSPNRQiIOMWOZigUYntJWE6M5BcHjNSXcGG5SoURCGNNZCpyrMadCC8pgTYRODO-ji0Nv5d1LA6GWO9f49rkg2Zi1fZzGSZsaHlLauxA8ZLLytlB-LymR3aay21T-bNoC6QF4szns_0nLydXt4pf9Am3le2Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ghafari, Amir Mohammad</creator><creator>Domínguez, Sergio E.</creator><creator>Järvinen, Ville</creator><creator>Gounani, Zahra</creator><creator>Schmit, Amandine</creator><creator>Sjöqvist, Marika</creator><creator>Sahlgren, Cecilia</creator><creator>Salo‐Ahen, Outi M. H.</creator><creator>Kvarnström, Carita</creator><creator>Torsi, Luisa</creator><creator>Österbacka, Ronald</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2157-683X</orcidid></search><sort><creationdate>20220201</creationdate><title>In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides</title><author>Ghafari, Amir Mohammad ; Domínguez, Sergio E. ; Järvinen, Ville ; Gounani, Zahra ; Schmit, Amandine ; Sjöqvist, Marika ; Sahlgren, Cecilia ; Salo‐Ahen, Outi M. H. ; Kvarnström, Carita ; Torsi, Luisa ; Österbacka, Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-3e422fa48ed391a487dc31e834b103dd3d98a87022cf9e33a6318c812eb08c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bioactive surfaces</topic><topic>bioelectronics</topic><topic>Biological activity</topic><topic>Contact angle</topic><topic>Dichloromethane</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Molecular dynamics</topic><topic>Peptides</topic><topic>Photoelectrons</topic><topic>Stimuli</topic><topic>Surface energy</topic><topic>switchable interfaces</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghafari, Amir Mohammad</creatorcontrib><creatorcontrib>Domínguez, Sergio E.</creatorcontrib><creatorcontrib>Järvinen, Ville</creatorcontrib><creatorcontrib>Gounani, Zahra</creatorcontrib><creatorcontrib>Schmit, Amandine</creatorcontrib><creatorcontrib>Sjöqvist, Marika</creatorcontrib><creatorcontrib>Sahlgren, Cecilia</creatorcontrib><creatorcontrib>Salo‐Ahen, Outi M. H.</creatorcontrib><creatorcontrib>Kvarnström, Carita</creatorcontrib><creatorcontrib>Torsi, Luisa</creatorcontrib><creatorcontrib>Österbacka, Ronald</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghafari, Amir Mohammad</au><au>Domínguez, Sergio E.</au><au>Järvinen, Ville</au><au>Gounani, Zahra</au><au>Schmit, Amandine</au><au>Sjöqvist, Marika</au><au>Sahlgren, Cecilia</au><au>Salo‐Ahen, Outi M. H.</au><au>Kvarnström, Carita</au><au>Torsi, Luisa</au><au>Österbacka, Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive self‐assembled monolayer (SAM) with specially designed charged peptides is used as a model system to switch between two separate hydrophilic states. The underwater contact angle (UCA) technique is used to measure changes in the wetting property of a dichloromethane droplet under electrical stimuli. The observed changes in the UCA of the bio‐interface can be understood in terms of a change in the surface energy between the ON and OFF states. Molecular dynamics simulations in an electric field have been performed to verify the hypothesis of the orientational change of the charged peptides upon electrical stimulation. In addition, X‐ray photoelectron spectroscopy (XPS) is performed to clarify the stability of the functionalized electrodes. Finally, the possibility of using such a novel switching system as a tool to characterize bioactive surfaces is discussed. Optical tensiometry is used to measure the conformational change of bio‐surfaces consisting of charged peptides switching between two conformations under an applied electrical potential. The different hydrophilicity of the surface is measured, and the surface energy differences between the ON and OFF states explain the observed contact angle changes of the bio‐interface.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.202101480</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2157-683X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2022-02, Vol.9 (4), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2624873147
source Wiley Online Library Journals Frontfile Complete
subjects bioactive surfaces
bioelectronics
Biological activity
Contact angle
Dichloromethane
Electric contacts
Electric fields
Molecular dynamics
Peptides
Photoelectrons
Stimuli
Surface energy
switchable interfaces
Wetting
title In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Coupled%20Electrochemical%E2%80%90Goniometry%20as%20a%20Tool%20to%20Reveal%20Conformational%20Changes%20of%20Charged%20Peptides&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Ghafari,%20Amir%20Mohammad&rft.date=2022-02-01&rft.volume=9&rft.issue=4&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202101480&rft_dat=%3Cproquest_cross%3E2624873147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624873147&rft_id=info:pmid/&rfr_iscdi=true