In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides
The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive sel...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2022-02, Vol.9 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 9 |
creator | Ghafari, Amir Mohammad Domínguez, Sergio E. Järvinen, Ville Gounani, Zahra Schmit, Amandine Sjöqvist, Marika Sahlgren, Cecilia Salo‐Ahen, Outi M. H. Kvarnström, Carita Torsi, Luisa Österbacka, Ronald |
description | The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive self‐assembled monolayer (SAM) with specially designed charged peptides is used as a model system to switch between two separate hydrophilic states. The underwater contact angle (UCA) technique is used to measure changes in the wetting property of a dichloromethane droplet under electrical stimuli. The observed changes in the UCA of the bio‐interface can be understood in terms of a change in the surface energy between the ON and OFF states. Molecular dynamics simulations in an electric field have been performed to verify the hypothesis of the orientational change of the charged peptides upon electrical stimulation. In addition, X‐ray photoelectron spectroscopy (XPS) is performed to clarify the stability of the functionalized electrodes. Finally, the possibility of using such a novel switching system as a tool to characterize bioactive surfaces is discussed.
Optical tensiometry is used to measure the conformational change of bio‐surfaces consisting of charged peptides switching between two conformations under an applied electrical potential. The different hydrophilicity of the surface is measured, and the surface energy differences between the ON and OFF states explain the observed contact angle changes of the bio‐interface. |
doi_str_mv | 10.1002/admi.202101480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624873147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624873147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-3e422fa48ed391a487dc31e834b103dd3d98a87022cf9e33a6318c812eb08c7d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EElXplbMlzin-SRvnWJVSKhWBoJwt1960Lkkc7ATUG4_AM_IkJCoCbpxmVppvtBqEzikZUkLYpTKFHTLCKKGxIEeox2g6jhI-Isd__CkahLAjhFDKKBO8h54XJX60dYOnrqlyMHiWg66901sorFb55_vH3JXWFVD7PVYBK7xyLse1ww_wCipvwTJzvlC1dWV3blW5gYBd1lm_aSvvoaqtgXCGTjKVBxh8ax89Xc9W05toeTdfTCfLSPNRQiIOMWOZigUYntJWE6M5BcHjNSXcGG5SoURCGNNZCpyrMadCC8pgTYRODO-ji0Nv5d1LA6GWO9f49rkg2Zi1fZzGSZsaHlLauxA8ZLLytlB-LymR3aay21T-bNoC6QF4szns_0nLydXt4pf9Am3le2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624873147</pqid></control><display><type>article</type><title>In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghafari, Amir Mohammad ; Domínguez, Sergio E. ; Järvinen, Ville ; Gounani, Zahra ; Schmit, Amandine ; Sjöqvist, Marika ; Sahlgren, Cecilia ; Salo‐Ahen, Outi M. H. ; Kvarnström, Carita ; Torsi, Luisa ; Österbacka, Ronald</creator><creatorcontrib>Ghafari, Amir Mohammad ; Domínguez, Sergio E. ; Järvinen, Ville ; Gounani, Zahra ; Schmit, Amandine ; Sjöqvist, Marika ; Sahlgren, Cecilia ; Salo‐Ahen, Outi M. H. ; Kvarnström, Carita ; Torsi, Luisa ; Österbacka, Ronald</creatorcontrib><description>The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive self‐assembled monolayer (SAM) with specially designed charged peptides is used as a model system to switch between two separate hydrophilic states. The underwater contact angle (UCA) technique is used to measure changes in the wetting property of a dichloromethane droplet under electrical stimuli. The observed changes in the UCA of the bio‐interface can be understood in terms of a change in the surface energy between the ON and OFF states. Molecular dynamics simulations in an electric field have been performed to verify the hypothesis of the orientational change of the charged peptides upon electrical stimulation. In addition, X‐ray photoelectron spectroscopy (XPS) is performed to clarify the stability of the functionalized electrodes. Finally, the possibility of using such a novel switching system as a tool to characterize bioactive surfaces is discussed.
Optical tensiometry is used to measure the conformational change of bio‐surfaces consisting of charged peptides switching between two conformations under an applied electrical potential. The different hydrophilicity of the surface is measured, and the surface energy differences between the ON and OFF states explain the observed contact angle changes of the bio‐interface.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202101480</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>bioactive surfaces ; bioelectronics ; Biological activity ; Contact angle ; Dichloromethane ; Electric contacts ; Electric fields ; Molecular dynamics ; Peptides ; Photoelectrons ; Stimuli ; Surface energy ; switchable interfaces ; Wetting</subject><ispartof>Advanced materials interfaces, 2022-02, Vol.9 (4), p.n/a</ispartof><rights>2021 Abo Akademi University. Advanced Materials Interfaces published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-3e422fa48ed391a487dc31e834b103dd3d98a87022cf9e33a6318c812eb08c7d3</citedby><cites>FETCH-LOGICAL-c3570-3e422fa48ed391a487dc31e834b103dd3d98a87022cf9e33a6318c812eb08c7d3</cites><orcidid>0000-0002-2157-683X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202101480$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202101480$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ghafari, Amir Mohammad</creatorcontrib><creatorcontrib>Domínguez, Sergio E.</creatorcontrib><creatorcontrib>Järvinen, Ville</creatorcontrib><creatorcontrib>Gounani, Zahra</creatorcontrib><creatorcontrib>Schmit, Amandine</creatorcontrib><creatorcontrib>Sjöqvist, Marika</creatorcontrib><creatorcontrib>Sahlgren, Cecilia</creatorcontrib><creatorcontrib>Salo‐Ahen, Outi M. H.</creatorcontrib><creatorcontrib>Kvarnström, Carita</creatorcontrib><creatorcontrib>Torsi, Luisa</creatorcontrib><creatorcontrib>Österbacka, Ronald</creatorcontrib><title>In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides</title><title>Advanced materials interfaces</title><description>The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive self‐assembled monolayer (SAM) with specially designed charged peptides is used as a model system to switch between two separate hydrophilic states. The underwater contact angle (UCA) technique is used to measure changes in the wetting property of a dichloromethane droplet under electrical stimuli. The observed changes in the UCA of the bio‐interface can be understood in terms of a change in the surface energy between the ON and OFF states. Molecular dynamics simulations in an electric field have been performed to verify the hypothesis of the orientational change of the charged peptides upon electrical stimulation. In addition, X‐ray photoelectron spectroscopy (XPS) is performed to clarify the stability of the functionalized electrodes. Finally, the possibility of using such a novel switching system as a tool to characterize bioactive surfaces is discussed.
Optical tensiometry is used to measure the conformational change of bio‐surfaces consisting of charged peptides switching between two conformations under an applied electrical potential. The different hydrophilicity of the surface is measured, and the surface energy differences between the ON and OFF states explain the observed contact angle changes of the bio‐interface.</description><subject>bioactive surfaces</subject><subject>bioelectronics</subject><subject>Biological activity</subject><subject>Contact angle</subject><subject>Dichloromethane</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Molecular dynamics</subject><subject>Peptides</subject><subject>Photoelectrons</subject><subject>Stimuli</subject><subject>Surface energy</subject><subject>switchable interfaces</subject><subject>Wetting</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1OwzAQhC0EElXplbMlzin-SRvnWJVSKhWBoJwt1960Lkkc7ATUG4_AM_IkJCoCbpxmVppvtBqEzikZUkLYpTKFHTLCKKGxIEeox2g6jhI-Isd__CkahLAjhFDKKBO8h54XJX60dYOnrqlyMHiWg66901sorFb55_vH3JXWFVD7PVYBK7xyLse1ww_wCipvwTJzvlC1dWV3blW5gYBd1lm_aSvvoaqtgXCGTjKVBxh8ax89Xc9W05toeTdfTCfLSPNRQiIOMWOZigUYntJWE6M5BcHjNSXcGG5SoURCGNNZCpyrMadCC8pgTYRODO-ji0Nv5d1LA6GWO9f49rkg2Zi1fZzGSZsaHlLauxA8ZLLytlB-LymR3aay21T-bNoC6QF4szns_0nLydXt4pf9Am3le2Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ghafari, Amir Mohammad</creator><creator>Domínguez, Sergio E.</creator><creator>Järvinen, Ville</creator><creator>Gounani, Zahra</creator><creator>Schmit, Amandine</creator><creator>Sjöqvist, Marika</creator><creator>Sahlgren, Cecilia</creator><creator>Salo‐Ahen, Outi M. H.</creator><creator>Kvarnström, Carita</creator><creator>Torsi, Luisa</creator><creator>Österbacka, Ronald</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2157-683X</orcidid></search><sort><creationdate>20220201</creationdate><title>In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides</title><author>Ghafari, Amir Mohammad ; Domínguez, Sergio E. ; Järvinen, Ville ; Gounani, Zahra ; Schmit, Amandine ; Sjöqvist, Marika ; Sahlgren, Cecilia ; Salo‐Ahen, Outi M. H. ; Kvarnström, Carita ; Torsi, Luisa ; Österbacka, Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-3e422fa48ed391a487dc31e834b103dd3d98a87022cf9e33a6318c812eb08c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bioactive surfaces</topic><topic>bioelectronics</topic><topic>Biological activity</topic><topic>Contact angle</topic><topic>Dichloromethane</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Molecular dynamics</topic><topic>Peptides</topic><topic>Photoelectrons</topic><topic>Stimuli</topic><topic>Surface energy</topic><topic>switchable interfaces</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghafari, Amir Mohammad</creatorcontrib><creatorcontrib>Domínguez, Sergio E.</creatorcontrib><creatorcontrib>Järvinen, Ville</creatorcontrib><creatorcontrib>Gounani, Zahra</creatorcontrib><creatorcontrib>Schmit, Amandine</creatorcontrib><creatorcontrib>Sjöqvist, Marika</creatorcontrib><creatorcontrib>Sahlgren, Cecilia</creatorcontrib><creatorcontrib>Salo‐Ahen, Outi M. H.</creatorcontrib><creatorcontrib>Kvarnström, Carita</creatorcontrib><creatorcontrib>Torsi, Luisa</creatorcontrib><creatorcontrib>Österbacka, Ronald</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghafari, Amir Mohammad</au><au>Domínguez, Sergio E.</au><au>Järvinen, Ville</au><au>Gounani, Zahra</au><au>Schmit, Amandine</au><au>Sjöqvist, Marika</au><au>Sahlgren, Cecilia</au><au>Salo‐Ahen, Outi M. H.</au><au>Kvarnström, Carita</au><au>Torsi, Luisa</au><au>Österbacka, Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The opportunity to manipulate cell functions by regulating bioactive surfaces is a potentially promising approach for organic bioelectronics. Here, the tuning of the orientation of charged peptides by means of an electrical input observed via optical tensiometry is reported. A stimuli‐responsive self‐assembled monolayer (SAM) with specially designed charged peptides is used as a model system to switch between two separate hydrophilic states. The underwater contact angle (UCA) technique is used to measure changes in the wetting property of a dichloromethane droplet under electrical stimuli. The observed changes in the UCA of the bio‐interface can be understood in terms of a change in the surface energy between the ON and OFF states. Molecular dynamics simulations in an electric field have been performed to verify the hypothesis of the orientational change of the charged peptides upon electrical stimulation. In addition, X‐ray photoelectron spectroscopy (XPS) is performed to clarify the stability of the functionalized electrodes. Finally, the possibility of using such a novel switching system as a tool to characterize bioactive surfaces is discussed.
Optical tensiometry is used to measure the conformational change of bio‐surfaces consisting of charged peptides switching between two conformations under an applied electrical potential. The different hydrophilicity of the surface is measured, and the surface energy differences between the ON and OFF states explain the observed contact angle changes of the bio‐interface.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.202101480</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2157-683X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2022-02, Vol.9 (4), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_2624873147 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bioactive surfaces bioelectronics Biological activity Contact angle Dichloromethane Electric contacts Electric fields Molecular dynamics Peptides Photoelectrons Stimuli Surface energy switchable interfaces Wetting |
title | In Situ Coupled Electrochemical‐Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Coupled%20Electrochemical%E2%80%90Goniometry%20as%20a%20Tool%20to%20Reveal%20Conformational%20Changes%20of%20Charged%20Peptides&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Ghafari,%20Amir%20Mohammad&rft.date=2022-02-01&rft.volume=9&rft.issue=4&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202101480&rft_dat=%3Cproquest_cross%3E2624873147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624873147&rft_id=info:pmid/&rfr_iscdi=true |