Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems
The interspecific interactions within and between adjacent ecosystems strongly depend on the changes in their abiotic and biotic components. However, little is known about how climate change and biodiversity loss in a specific ecosystem can impact the multiple trophic interactions of different biolo...
Gespeichert in:
Veröffentlicht in: | The Journal of animal ecology 2022-02, Vol.91 (2), p.428-442 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 2 |
container_start_page | 428 |
container_title | The Journal of animal ecology |
container_volume | 91 |
creator | Antiqueira, Pablo Augusto P. Petchey, Owen L. Rezende, Felipe Machado Velho, Luiz Felipe Rodrigues, Luzia Cleide Romero, Gustavo Quevedo |
description | The interspecific interactions within and between adjacent ecosystems strongly depend on the changes in their abiotic and biotic components. However, little is known about how climate change and biodiversity loss in a specific ecosystem can impact the multiple trophic interactions of different biological groups within and across ecosystems.
We used natural microecosystems (tank‐bromeliads) as a model system to investigate the main and interactive effects of aquatic warming and aquatic top predator loss (i.e. trophic downgrading) on trophic relationships in three integrated food web compartments: (a) aquatic micro‐organisms, (b) aquatic macro‐organisms and (c) terrestrial predators (i.e. via cross‐ecosystem effects).
The aquatic top predator loss substantially impacted the three food web compartments. In the aquatic macrofauna compartment, trophic downgrading increased the filter feeder richness and abundance directly and indirectly via an increase in detritivore richness, likely through a facilitative interaction. For the microbiota compartment, aquatic top predator loss had a negative effect on algae richness, probably via decreasing the input of nutrients from predator biological activities. Furthermore, the more active terrestrial predators responded more to aquatic top predator loss, via an increase in some components of aquatic macrofauna, than more stationary terrestrial predators. The aquatic trophic downgrading indirectly altered the richness and abundance of cursorial terrestrial predators, but these effects had different direction according to the aquatic functional group, filter feeder or other detritivores. The web‐building predators were indirectly affected by aquatic trophic downgrading due to increased filter feeder richness. Aquatic warming did not affect the aquatic micro‐ or macro‐organisms but did positively affect the abundance of web‐building terrestrial predators.
These results allow us to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.
Resumo
As interações interespecíficas dentro e entre ecossistemas adjacentes dependem fortemente das mudanças de seus componentes abióticos e bióticos. Entretanto, pouco se sabe sobre como mudanças climáticas e a perda de biodiversidade em um ecossistema específico pode impactar as múltiplas interaçõe |
doi_str_mv | 10.1111/1365-2656.13640 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624805583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624805583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-2293807b860f00c5c362b4b496358bde9e1ba6a624876319097421d66991fea03</originalsourceid><addsrcrecordid>eNqFkM1PwyAYh4nRuDk9ezMknru9QEvb47LMrxi9aDwS2tKNpS0VWpf99_Zj7iqXF8jz-0EehG4JzEm3FoTxwKM84PNu58MZmp5uztEUgBIvCmOYoCvndgAQUmCXaML8CCIAMkX7L2lLXW2wrDLcmBrXVmWyMRYXxjmcWf2jcKatSpsB0dXxoPK8Gw6bCpdt0ei6ULixpt7qFG-saWuH97rZ6mqIydT2dSo17uAaVbprdJHLwqmb45yhz4f1x-rJe31_fF4tX73UJww8SmMWQZhEHHKANEgZp4mf-DFnQZRkKlYkkVxy6kchZySGOPQpyTiPY5IrCWyG7sfe2prvVrlG7Exrq-5JQfsUBEHEOmoxUsM3rcpFbXUp7UEQEL1o0WsVvVYxiO4Sd8feNilVduL_zHYAH4G9LtThvz7xsnxbj82_xsKIAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624805583</pqid></control><display><type>article</type><title>Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Antiqueira, Pablo Augusto P. ; Petchey, Owen L. ; Rezende, Felipe ; Machado Velho, Luiz Felipe ; Rodrigues, Luzia Cleide ; Romero, Gustavo Quevedo</creator><creatorcontrib>Antiqueira, Pablo Augusto P. ; Petchey, Owen L. ; Rezende, Felipe ; Machado Velho, Luiz Felipe ; Rodrigues, Luzia Cleide ; Romero, Gustavo Quevedo</creatorcontrib><description>The interspecific interactions within and between adjacent ecosystems strongly depend on the changes in their abiotic and biotic components. However, little is known about how climate change and biodiversity loss in a specific ecosystem can impact the multiple trophic interactions of different biological groups within and across ecosystems.
We used natural microecosystems (tank‐bromeliads) as a model system to investigate the main and interactive effects of aquatic warming and aquatic top predator loss (i.e. trophic downgrading) on trophic relationships in three integrated food web compartments: (a) aquatic micro‐organisms, (b) aquatic macro‐organisms and (c) terrestrial predators (i.e. via cross‐ecosystem effects).
The aquatic top predator loss substantially impacted the three food web compartments. In the aquatic macrofauna compartment, trophic downgrading increased the filter feeder richness and abundance directly and indirectly via an increase in detritivore richness, likely through a facilitative interaction. For the microbiota compartment, aquatic top predator loss had a negative effect on algae richness, probably via decreasing the input of nutrients from predator biological activities. Furthermore, the more active terrestrial predators responded more to aquatic top predator loss, via an increase in some components of aquatic macrofauna, than more stationary terrestrial predators. The aquatic trophic downgrading indirectly altered the richness and abundance of cursorial terrestrial predators, but these effects had different direction according to the aquatic functional group, filter feeder or other detritivores. The web‐building predators were indirectly affected by aquatic trophic downgrading due to increased filter feeder richness. Aquatic warming did not affect the aquatic micro‐ or macro‐organisms but did positively affect the abundance of web‐building terrestrial predators.
These results allow us to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.
Resumo
As interações interespecíficas dentro e entre ecossistemas adjacentes dependem fortemente das mudanças de seus componentes abióticos e bióticos. Entretanto, pouco se sabe sobre como mudanças climáticas e a perda de biodiversidade em um ecossistema específico pode impactar as múltiplas interações tróficas de diferentes grupos biológicos dentro e entre ecossistemas.
Nós utilizamos micro ecossistemas naturais (bromélias‐tanque) como sistema modelo para investigar os efeitos individuais e interativos do aquecimento e da perda de predadores aquáticos (simplificação trófica) nas relações tróficas em três compartimentos integrados da teia alimentar: i) micro‐organismos aquáticos, ii) macroorganismos aquáticos e iii) predadores terrestres (via efeito entre ecossistemas).
A perda de predadores de topo aquáticos afetou substancialmente os três compartimentos da rede trófica. No compartimento da macrofauna aquática, a simplificação trófica aumentou a riqueza e abundância de filtradores, direta e indiretamente, por meio de um aumento da riqueza de espécies de detritívoros, provavelmente através de uma interação de facilitação. Para o compartimento da microbiota, a perda de predadores de topo aquáticos teve um efeito negativo sobre a riqueza de espécies de algas, provavelmente por meio da diminuição da entrada de nutrientes provenientes das atividades biológicas dos predadores. Além disso, os predadores terrestres mais ativos responderam mais à perda de predadores de topo aquáticos, por meio de um aumento de alguns componentes da macrofauna aquática, do que predadores terrestres mais estacionários. A simplificação trófica aquática alterou indiretamente a riqueza e abundância de predadores cursoriais terrestres, mas esses efeitos tiveram direção diferente de acordo com o grupo funcional aquático, filtradores ou outros detritívoros. Os predadores construtores de teias foram indiretamente afetados pela simplificação trófica aquática devido ao aumento da riqueza de filtradores. O aquecimento aquático não afetou os micro ou macro organismos aquáticos, mas afetou positivamente a abundância de predadores terrestres construtores de teias.
Esses resultados nos permitem levantar um quadro preditivo de como diferentes mudanças antropogênicas preditas para as próximas décadas, como o aquecimento e a perda de predadores de topo aquáticos, podem afetar diferencialmente vários grupos biológicos por meio de interações dentro e entre os ecossistemas.
This study allowed the authors to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.</description><identifier>ISSN: 0021-8790</identifier><identifier>EISSN: 1365-2656</identifier><identifier>DOI: 10.1111/1365-2656.13640</identifier><identifier>PMID: 34808001</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Abundance ; Algae ; Animals ; Anthropogenic factors ; Aquatic ecosystems ; Aquatic Organisms ; Biodiversity ; Biodiversity loss ; Climate change ; Compartments ; cross ecosystem ; Detritivores ; Ecosystem ; Ecosystems ; Environmental impact ; Food Chain ; Food chains ; food web ; Food webs ; Functional groups ; Human influences ; Interspecific relationships ; Macrofauna ; Microbiota ; Microecosystems ; Nutrients ; Organisms ; Predators ; Predatory Behavior ; tank‐bromeliad ; Terrestrial environments ; top predator loss ; Trophic relationships ; warming ; Web building</subject><ispartof>The Journal of animal ecology, 2022-02, Vol.91 (2), p.428-442</ispartof><rights>2021 British Ecological Society</rights><rights>2021 British Ecological Society.</rights><rights>Journal of Animal Ecology © 2022 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-2293807b860f00c5c362b4b496358bde9e1ba6a624876319097421d66991fea03</citedby><cites>FETCH-LOGICAL-c4130-2293807b860f00c5c362b4b496358bde9e1ba6a624876319097421d66991fea03</cites><orcidid>0000-0001-8111-4955 ; 0000-0003-3736-4759 ; 0000-0002-1118-8796 ; 0000-0002-7724-1633 ; 0000-0002-2337-1459 ; 0000-0002-0593-0931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2656.13640$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2656.13640$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34808001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antiqueira, Pablo Augusto P.</creatorcontrib><creatorcontrib>Petchey, Owen L.</creatorcontrib><creatorcontrib>Rezende, Felipe</creatorcontrib><creatorcontrib>Machado Velho, Luiz Felipe</creatorcontrib><creatorcontrib>Rodrigues, Luzia Cleide</creatorcontrib><creatorcontrib>Romero, Gustavo Quevedo</creatorcontrib><title>Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems</title><title>The Journal of animal ecology</title><addtitle>J Anim Ecol</addtitle><description>The interspecific interactions within and between adjacent ecosystems strongly depend on the changes in their abiotic and biotic components. However, little is known about how climate change and biodiversity loss in a specific ecosystem can impact the multiple trophic interactions of different biological groups within and across ecosystems.
We used natural microecosystems (tank‐bromeliads) as a model system to investigate the main and interactive effects of aquatic warming and aquatic top predator loss (i.e. trophic downgrading) on trophic relationships in three integrated food web compartments: (a) aquatic micro‐organisms, (b) aquatic macro‐organisms and (c) terrestrial predators (i.e. via cross‐ecosystem effects).
The aquatic top predator loss substantially impacted the three food web compartments. In the aquatic macrofauna compartment, trophic downgrading increased the filter feeder richness and abundance directly and indirectly via an increase in detritivore richness, likely through a facilitative interaction. For the microbiota compartment, aquatic top predator loss had a negative effect on algae richness, probably via decreasing the input of nutrients from predator biological activities. Furthermore, the more active terrestrial predators responded more to aquatic top predator loss, via an increase in some components of aquatic macrofauna, than more stationary terrestrial predators. The aquatic trophic downgrading indirectly altered the richness and abundance of cursorial terrestrial predators, but these effects had different direction according to the aquatic functional group, filter feeder or other detritivores. The web‐building predators were indirectly affected by aquatic trophic downgrading due to increased filter feeder richness. Aquatic warming did not affect the aquatic micro‐ or macro‐organisms but did positively affect the abundance of web‐building terrestrial predators.
These results allow us to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.
Resumo
As interações interespecíficas dentro e entre ecossistemas adjacentes dependem fortemente das mudanças de seus componentes abióticos e bióticos. Entretanto, pouco se sabe sobre como mudanças climáticas e a perda de biodiversidade em um ecossistema específico pode impactar as múltiplas interações tróficas de diferentes grupos biológicos dentro e entre ecossistemas.
Nós utilizamos micro ecossistemas naturais (bromélias‐tanque) como sistema modelo para investigar os efeitos individuais e interativos do aquecimento e da perda de predadores aquáticos (simplificação trófica) nas relações tróficas em três compartimentos integrados da teia alimentar: i) micro‐organismos aquáticos, ii) macroorganismos aquáticos e iii) predadores terrestres (via efeito entre ecossistemas).
A perda de predadores de topo aquáticos afetou substancialmente os três compartimentos da rede trófica. No compartimento da macrofauna aquática, a simplificação trófica aumentou a riqueza e abundância de filtradores, direta e indiretamente, por meio de um aumento da riqueza de espécies de detritívoros, provavelmente através de uma interação de facilitação. Para o compartimento da microbiota, a perda de predadores de topo aquáticos teve um efeito negativo sobre a riqueza de espécies de algas, provavelmente por meio da diminuição da entrada de nutrientes provenientes das atividades biológicas dos predadores. Além disso, os predadores terrestres mais ativos responderam mais à perda de predadores de topo aquáticos, por meio de um aumento de alguns componentes da macrofauna aquática, do que predadores terrestres mais estacionários. A simplificação trófica aquática alterou indiretamente a riqueza e abundância de predadores cursoriais terrestres, mas esses efeitos tiveram direção diferente de acordo com o grupo funcional aquático, filtradores ou outros detritívoros. Os predadores construtores de teias foram indiretamente afetados pela simplificação trófica aquática devido ao aumento da riqueza de filtradores. O aquecimento aquático não afetou os micro ou macro organismos aquáticos, mas afetou positivamente a abundância de predadores terrestres construtores de teias.
Esses resultados nos permitem levantar um quadro preditivo de como diferentes mudanças antropogênicas preditas para as próximas décadas, como o aquecimento e a perda de predadores de topo aquáticos, podem afetar diferencialmente vários grupos biológicos por meio de interações dentro e entre os ecossistemas.
This study allowed the authors to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.</description><subject>Abundance</subject><subject>Algae</subject><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Aquatic ecosystems</subject><subject>Aquatic Organisms</subject><subject>Biodiversity</subject><subject>Biodiversity loss</subject><subject>Climate change</subject><subject>Compartments</subject><subject>cross ecosystem</subject><subject>Detritivores</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental impact</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>food web</subject><subject>Food webs</subject><subject>Functional groups</subject><subject>Human influences</subject><subject>Interspecific relationships</subject><subject>Macrofauna</subject><subject>Microbiota</subject><subject>Microecosystems</subject><subject>Nutrients</subject><subject>Organisms</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>tank‐bromeliad</subject><subject>Terrestrial environments</subject><subject>top predator loss</subject><subject>Trophic relationships</subject><subject>warming</subject><subject>Web building</subject><issn>0021-8790</issn><issn>1365-2656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PwyAYh4nRuDk9ezMknru9QEvb47LMrxi9aDwS2tKNpS0VWpf99_Zj7iqXF8jz-0EehG4JzEm3FoTxwKM84PNu58MZmp5uztEUgBIvCmOYoCvndgAQUmCXaML8CCIAMkX7L2lLXW2wrDLcmBrXVmWyMRYXxjmcWf2jcKatSpsB0dXxoPK8Gw6bCpdt0ei6ULixpt7qFG-saWuH97rZ6mqIydT2dSo17uAaVbprdJHLwqmb45yhz4f1x-rJe31_fF4tX73UJww8SmMWQZhEHHKANEgZp4mf-DFnQZRkKlYkkVxy6kchZySGOPQpyTiPY5IrCWyG7sfe2prvVrlG7Exrq-5JQfsUBEHEOmoxUsM3rcpFbXUp7UEQEL1o0WsVvVYxiO4Sd8feNilVduL_zHYAH4G9LtThvz7xsnxbj82_xsKIAA</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Antiqueira, Pablo Augusto P.</creator><creator>Petchey, Owen L.</creator><creator>Rezende, Felipe</creator><creator>Machado Velho, Luiz Felipe</creator><creator>Rodrigues, Luzia Cleide</creator><creator>Romero, Gustavo Quevedo</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8111-4955</orcidid><orcidid>https://orcid.org/0000-0003-3736-4759</orcidid><orcidid>https://orcid.org/0000-0002-1118-8796</orcidid><orcidid>https://orcid.org/0000-0002-7724-1633</orcidid><orcidid>https://orcid.org/0000-0002-2337-1459</orcidid><orcidid>https://orcid.org/0000-0002-0593-0931</orcidid></search><sort><creationdate>202202</creationdate><title>Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems</title><author>Antiqueira, Pablo Augusto P. ; Petchey, Owen L. ; Rezende, Felipe ; Machado Velho, Luiz Felipe ; Rodrigues, Luzia Cleide ; Romero, Gustavo Quevedo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-2293807b860f00c5c362b4b496358bde9e1ba6a624876319097421d66991fea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abundance</topic><topic>Algae</topic><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Aquatic ecosystems</topic><topic>Aquatic Organisms</topic><topic>Biodiversity</topic><topic>Biodiversity loss</topic><topic>Climate change</topic><topic>Compartments</topic><topic>cross ecosystem</topic><topic>Detritivores</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental impact</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>food web</topic><topic>Food webs</topic><topic>Functional groups</topic><topic>Human influences</topic><topic>Interspecific relationships</topic><topic>Macrofauna</topic><topic>Microbiota</topic><topic>Microecosystems</topic><topic>Nutrients</topic><topic>Organisms</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>tank‐bromeliad</topic><topic>Terrestrial environments</topic><topic>top predator loss</topic><topic>Trophic relationships</topic><topic>warming</topic><topic>Web building</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antiqueira, Pablo Augusto P.</creatorcontrib><creatorcontrib>Petchey, Owen L.</creatorcontrib><creatorcontrib>Rezende, Felipe</creatorcontrib><creatorcontrib>Machado Velho, Luiz Felipe</creatorcontrib><creatorcontrib>Rodrigues, Luzia Cleide</creatorcontrib><creatorcontrib>Romero, Gustavo Quevedo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of animal ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antiqueira, Pablo Augusto P.</au><au>Petchey, Owen L.</au><au>Rezende, Felipe</au><au>Machado Velho, Luiz Felipe</au><au>Rodrigues, Luzia Cleide</au><au>Romero, Gustavo Quevedo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems</atitle><jtitle>The Journal of animal ecology</jtitle><addtitle>J Anim Ecol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>91</volume><issue>2</issue><spage>428</spage><epage>442</epage><pages>428-442</pages><issn>0021-8790</issn><eissn>1365-2656</eissn><abstract>The interspecific interactions within and between adjacent ecosystems strongly depend on the changes in their abiotic and biotic components. However, little is known about how climate change and biodiversity loss in a specific ecosystem can impact the multiple trophic interactions of different biological groups within and across ecosystems.
We used natural microecosystems (tank‐bromeliads) as a model system to investigate the main and interactive effects of aquatic warming and aquatic top predator loss (i.e. trophic downgrading) on trophic relationships in three integrated food web compartments: (a) aquatic micro‐organisms, (b) aquatic macro‐organisms and (c) terrestrial predators (i.e. via cross‐ecosystem effects).
The aquatic top predator loss substantially impacted the three food web compartments. In the aquatic macrofauna compartment, trophic downgrading increased the filter feeder richness and abundance directly and indirectly via an increase in detritivore richness, likely through a facilitative interaction. For the microbiota compartment, aquatic top predator loss had a negative effect on algae richness, probably via decreasing the input of nutrients from predator biological activities. Furthermore, the more active terrestrial predators responded more to aquatic top predator loss, via an increase in some components of aquatic macrofauna, than more stationary terrestrial predators. The aquatic trophic downgrading indirectly altered the richness and abundance of cursorial terrestrial predators, but these effects had different direction according to the aquatic functional group, filter feeder or other detritivores. The web‐building predators were indirectly affected by aquatic trophic downgrading due to increased filter feeder richness. Aquatic warming did not affect the aquatic micro‐ or macro‐organisms but did positively affect the abundance of web‐building terrestrial predators.
These results allow us to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.
Resumo
As interações interespecíficas dentro e entre ecossistemas adjacentes dependem fortemente das mudanças de seus componentes abióticos e bióticos. Entretanto, pouco se sabe sobre como mudanças climáticas e a perda de biodiversidade em um ecossistema específico pode impactar as múltiplas interações tróficas de diferentes grupos biológicos dentro e entre ecossistemas.
Nós utilizamos micro ecossistemas naturais (bromélias‐tanque) como sistema modelo para investigar os efeitos individuais e interativos do aquecimento e da perda de predadores aquáticos (simplificação trófica) nas relações tróficas em três compartimentos integrados da teia alimentar: i) micro‐organismos aquáticos, ii) macroorganismos aquáticos e iii) predadores terrestres (via efeito entre ecossistemas).
A perda de predadores de topo aquáticos afetou substancialmente os três compartimentos da rede trófica. No compartimento da macrofauna aquática, a simplificação trófica aumentou a riqueza e abundância de filtradores, direta e indiretamente, por meio de um aumento da riqueza de espécies de detritívoros, provavelmente através de uma interação de facilitação. Para o compartimento da microbiota, a perda de predadores de topo aquáticos teve um efeito negativo sobre a riqueza de espécies de algas, provavelmente por meio da diminuição da entrada de nutrientes provenientes das atividades biológicas dos predadores. Além disso, os predadores terrestres mais ativos responderam mais à perda de predadores de topo aquáticos, por meio de um aumento de alguns componentes da macrofauna aquática, do que predadores terrestres mais estacionários. A simplificação trófica aquática alterou indiretamente a riqueza e abundância de predadores cursoriais terrestres, mas esses efeitos tiveram direção diferente de acordo com o grupo funcional aquático, filtradores ou outros detritívoros. Os predadores construtores de teias foram indiretamente afetados pela simplificação trófica aquática devido ao aumento da riqueza de filtradores. O aquecimento aquático não afetou os micro ou macro organismos aquáticos, mas afetou positivamente a abundância de predadores terrestres construtores de teias.
Esses resultados nos permitem levantar um quadro preditivo de como diferentes mudanças antropogênicas preditas para as próximas décadas, como o aquecimento e a perda de predadores de topo aquáticos, podem afetar diferencialmente vários grupos biológicos por meio de interações dentro e entre os ecossistemas.
This study allowed the authors to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>34808001</pmid><doi>10.1111/1365-2656.13640</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8111-4955</orcidid><orcidid>https://orcid.org/0000-0003-3736-4759</orcidid><orcidid>https://orcid.org/0000-0002-1118-8796</orcidid><orcidid>https://orcid.org/0000-0002-7724-1633</orcidid><orcidid>https://orcid.org/0000-0002-2337-1459</orcidid><orcidid>https://orcid.org/0000-0002-0593-0931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8790 |
ispartof | The Journal of animal ecology, 2022-02, Vol.91 (2), p.428-442 |
issn | 0021-8790 1365-2656 |
language | eng |
recordid | cdi_proquest_journals_2624805583 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abundance Algae Animals Anthropogenic factors Aquatic ecosystems Aquatic Organisms Biodiversity Biodiversity loss Climate change Compartments cross ecosystem Detritivores Ecosystem Ecosystems Environmental impact Food Chain Food chains food web Food webs Functional groups Human influences Interspecific relationships Macrofauna Microbiota Microecosystems Nutrients Organisms Predators Predatory Behavior tank‐bromeliad Terrestrial environments top predator loss Trophic relationships warming Web building |
title | Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T09%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Warming%20and%20top%20predator%20loss%20drive%20direct%20and%20indirect%20effects%20on%20multiple%20trophic%20groups%20within%20and%20across%20ecosystems&rft.jtitle=The%20Journal%20of%20animal%20ecology&rft.au=Antiqueira,%20Pablo%20Augusto%20P.&rft.date=2022-02&rft.volume=91&rft.issue=2&rft.spage=428&rft.epage=442&rft.pages=428-442&rft.issn=0021-8790&rft.eissn=1365-2656&rft_id=info:doi/10.1111/1365-2656.13640&rft_dat=%3Cproquest_cross%3E2624805583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624805583&rft_id=info:pmid/34808001&rfr_iscdi=true |