Decay Estimate and Blow-up for a Damped Wave Equation with Supercritical Sources
This article deals with an initial and boundary value problem to the following damped wave equation: u t t − Δ u − ω Δ u t + μ u t = | u | p − 2 u in a bounded domain. An energy decay estimate for the solutions when ω ≥ 0 and μ > − ω λ 1 is obtained by adopting a new method, where λ 1 is the firs...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2022-02, Vol.177 (1), Article 8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article deals with an initial and boundary value problem to the following damped wave equation:
u
t
t
−
Δ
u
−
ω
Δ
u
t
+
μ
u
t
=
|
u
|
p
−
2
u
in a bounded domain. An energy decay estimate for the solutions when
ω
≥
0
and
μ
>
−
ω
λ
1
is obtained by adopting a new method, where
λ
1
is the first eigenvalue of the operator
−
Δ
under the homogeneous Dirichlet boundary conditions. Moreover, a blow-up result is proved for solutions with high energy initial data. An estimate of the upper bounded for the lifespan of the solution is showed as well. These results give some answers to the open problems in Gazzola and Squassina (Ann. Inst. Henri Poincaré 23:185–207,
2006
). |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1007/s10440-022-00469-y |