Toward a Practical Appraisal for Waveform Tomography of Band- and Offset-Limited Marine Seismic Data

We present a generalized workflow to retrieve high-resolution P-wave velocity ( V_{\mathrm{ P}} ) models of complex Earth's subsurface structures from traditional marine near-vertical seismic reflection experiments. These records have typically offsets too short to map refraction phases and lac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14
Hauptverfasser: Gras, Claudia, Jimenez-Tejero, Clara Estela, Sallares, Valenti, Melendez, Adria, Ranero, Cesar R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Gras, Claudia
Jimenez-Tejero, Clara Estela
Sallares, Valenti
Melendez, Adria
Ranero, Cesar R.
description We present a generalized workflow to retrieve high-resolution P-wave velocity ( V_{\mathrm{ P}} ) models of complex Earth's subsurface structures from traditional marine near-vertical seismic reflection experiments. These records have typically offsets too short to map refraction phases and lack low-frequency information. The workflow is composed of three steps: 1) downward continuation (DC) of seismic records to the seafloor to recover diving wave information; 2) travel-time tomography (TTT) of first arrivals obtained from DC data, to retrieve a kinematically correct model; and 3) full-waveform inversion (FWI) of the original streamer dataset, starting with the model obtained with TTT and sequentially introducing higher wavenumber details into the model. We show that the TTT allows overcoming the issues associated with the nonlinearity intrinsic to FWI. We also disentangle envelope and phase from the waveform to choose the objective function most suitable for FWI. We assess the accuracy of initial models and predict the quality of the FWI results by quantifying the early arrival cycle skipping between original and simulated data. The efficiency of the workflow is tested with a challenging synthetic target model, containing vertical boundaries with strong velocity contrasts and velocity inversions embedded in a checkerboard-like pattern. We show that workflow steps 1) and 2) provide a TTT model that is not cycle skipped at the frequencies available in most marine seismic experiments and thus allow step 3) FWI to obtain high-resolution V_{\mathrm{ P}} models of the subsurface using band- and offset-limited field datasets, traditionally collected in marine airgun and streamer acquisitions.
doi_str_mv 10.1109/TGRS.2021.3097966
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2624756652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9572373</ieee_id><sourcerecordid>2624756652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-dfdb54db2c3e5bb5837b720004707c9bd624c9af6153711229313f864cf794f93</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKsPIG4CrqfmnmZZb1WoVOyIy5DJRVM6nTGZKn17p7S4Of9ZfP858AFwidEIY6RuyunbYkQQwSOKlFRCHIEB5nxcIMHYMRggrERBxoqcgrOclwhhxrEcAFc2vyY5aOBrMraL1qzgpG2TibnfQpPgh_nxfdawbOrmM5n2awubAG_N2hWwH3AeQvZdMYt17LyDLybFtYcLH3MdLbw3nTkHJ8Gssr845BC8Pz6Ud0_FbD59vpvMCkup6AoXXMWZq4ilnlcVH1NZSYIQYhJJqyonCLPKBIE5lRgToiimYSyYDVKxoOgQXO_vtqn53vjc6WWzSev-pSZ9V3IhOOkpvKdsanJOPug2xdqkrcZI72TqnUy9k6kPMvvO1b4Tvff_vOKSUEnpH_E8b1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624756652</pqid></control><display><type>article</type><title>Toward a Practical Appraisal for Waveform Tomography of Band- and Offset-Limited Marine Seismic Data</title><source>IEEE Electronic Library (IEL)</source><creator>Gras, Claudia ; Jimenez-Tejero, Clara Estela ; Sallares, Valenti ; Melendez, Adria ; Ranero, Cesar R.</creator><creatorcontrib>Gras, Claudia ; Jimenez-Tejero, Clara Estela ; Sallares, Valenti ; Melendez, Adria ; Ranero, Cesar R.</creatorcontrib><description><![CDATA[We present a generalized workflow to retrieve high-resolution P-wave velocity (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ P}} </tex-math></inline-formula>) models of complex Earth's subsurface structures from traditional marine near-vertical seismic reflection experiments. These records have typically offsets too short to map refraction phases and lack low-frequency information. The workflow is composed of three steps: 1) downward continuation (DC) of seismic records to the seafloor to recover diving wave information; 2) travel-time tomography (TTT) of first arrivals obtained from DC data, to retrieve a kinematically correct model; and 3) full-waveform inversion (FWI) of the original streamer dataset, starting with the model obtained with TTT and sequentially introducing higher wavenumber details into the model. We show that the TTT allows overcoming the issues associated with the nonlinearity intrinsic to FWI. We also disentangle envelope and phase from the waveform to choose the objective function most suitable for FWI. We assess the accuracy of initial models and predict the quality of the FWI results by quantifying the early arrival cycle skipping between original and simulated data. The efficiency of the workflow is tested with a challenging synthetic target model, containing vertical boundaries with strong velocity contrasts and velocity inversions embedded in a checkerboard-like pattern. We show that workflow steps 1) and 2) provide a TTT model that is not cycle skipped at the frequencies available in most marine seismic experiments and thus allow step 3) FWI to obtain high-resolution <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ P}} </tex-math></inline-formula> models of the subsurface using band- and offset-limited field datasets, traditionally collected in marine airgun and streamer acquisitions.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3097966</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic waves ; Analytical models ; Data models ; Datasets ; downward continuation (DC) ; full-waveform inversion ; Geology ; Geometry ; High resolution ; inverse theory ; Inversions ; marine seismic data ; Model accuracy ; Nonlinear systems ; Nonlinearity ; numerical modeling ; Objective function ; Ocean floor ; P waves ; Propagation ; Records ; Resolution ; Seismic data ; Seismic surveys ; Seismic velocities ; Seismograms ; signal analysis ; Streaming media ; Tomography ; Travel time ; travel-time tomography (TTT) ; Velocity ; velocity models ; Wave velocity ; waveform tomography ; Waveforms ; Wavelengths ; Workflow</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-dfdb54db2c3e5bb5837b720004707c9bd624c9af6153711229313f864cf794f93</citedby><cites>FETCH-LOGICAL-c336t-dfdb54db2c3e5bb5837b720004707c9bd624c9af6153711229313f864cf794f93</cites><orcidid>0000-0002-8193-415X ; 0000-0002-2011-1416 ; 0000-0003-0075-5705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9572373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9572373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gras, Claudia</creatorcontrib><creatorcontrib>Jimenez-Tejero, Clara Estela</creatorcontrib><creatorcontrib>Sallares, Valenti</creatorcontrib><creatorcontrib>Melendez, Adria</creatorcontrib><creatorcontrib>Ranero, Cesar R.</creatorcontrib><title>Toward a Practical Appraisal for Waveform Tomography of Band- and Offset-Limited Marine Seismic Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[We present a generalized workflow to retrieve high-resolution P-wave velocity (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ P}} </tex-math></inline-formula>) models of complex Earth's subsurface structures from traditional marine near-vertical seismic reflection experiments. These records have typically offsets too short to map refraction phases and lack low-frequency information. The workflow is composed of three steps: 1) downward continuation (DC) of seismic records to the seafloor to recover diving wave information; 2) travel-time tomography (TTT) of first arrivals obtained from DC data, to retrieve a kinematically correct model; and 3) full-waveform inversion (FWI) of the original streamer dataset, starting with the model obtained with TTT and sequentially introducing higher wavenumber details into the model. We show that the TTT allows overcoming the issues associated with the nonlinearity intrinsic to FWI. We also disentangle envelope and phase from the waveform to choose the objective function most suitable for FWI. We assess the accuracy of initial models and predict the quality of the FWI results by quantifying the early arrival cycle skipping between original and simulated data. The efficiency of the workflow is tested with a challenging synthetic target model, containing vertical boundaries with strong velocity contrasts and velocity inversions embedded in a checkerboard-like pattern. We show that workflow steps 1) and 2) provide a TTT model that is not cycle skipped at the frequencies available in most marine seismic experiments and thus allow step 3) FWI to obtain high-resolution <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ P}} </tex-math></inline-formula> models of the subsurface using band- and offset-limited field datasets, traditionally collected in marine airgun and streamer acquisitions.]]></description><subject>Acoustic waves</subject><subject>Analytical models</subject><subject>Data models</subject><subject>Datasets</subject><subject>downward continuation (DC)</subject><subject>full-waveform inversion</subject><subject>Geology</subject><subject>Geometry</subject><subject>High resolution</subject><subject>inverse theory</subject><subject>Inversions</subject><subject>marine seismic data</subject><subject>Model accuracy</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>numerical modeling</subject><subject>Objective function</subject><subject>Ocean floor</subject><subject>P waves</subject><subject>Propagation</subject><subject>Records</subject><subject>Resolution</subject><subject>Seismic data</subject><subject>Seismic surveys</subject><subject>Seismic velocities</subject><subject>Seismograms</subject><subject>signal analysis</subject><subject>Streaming media</subject><subject>Tomography</subject><subject>Travel time</subject><subject>travel-time tomography (TTT)</subject><subject>Velocity</subject><subject>velocity models</subject><subject>Wave velocity</subject><subject>waveform tomography</subject><subject>Waveforms</subject><subject>Wavelengths</subject><subject>Workflow</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhoMoWKsPIG4CrqfmnmZZb1WoVOyIy5DJRVM6nTGZKn17p7S4Of9ZfP858AFwidEIY6RuyunbYkQQwSOKlFRCHIEB5nxcIMHYMRggrERBxoqcgrOclwhhxrEcAFc2vyY5aOBrMraL1qzgpG2TibnfQpPgh_nxfdawbOrmM5n2awubAG_N2hWwH3AeQvZdMYt17LyDLybFtYcLH3MdLbw3nTkHJ8Gssr845BC8Pz6Ud0_FbD59vpvMCkup6AoXXMWZq4ilnlcVH1NZSYIQYhJJqyonCLPKBIE5lRgToiimYSyYDVKxoOgQXO_vtqn53vjc6WWzSev-pSZ9V3IhOOkpvKdsanJOPug2xdqkrcZI72TqnUy9k6kPMvvO1b4Tvff_vOKSUEnpH_E8b1M</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Gras, Claudia</creator><creator>Jimenez-Tejero, Clara Estela</creator><creator>Sallares, Valenti</creator><creator>Melendez, Adria</creator><creator>Ranero, Cesar R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8193-415X</orcidid><orcidid>https://orcid.org/0000-0002-2011-1416</orcidid><orcidid>https://orcid.org/0000-0003-0075-5705</orcidid></search><sort><creationdate>2022</creationdate><title>Toward a Practical Appraisal for Waveform Tomography of Band- and Offset-Limited Marine Seismic Data</title><author>Gras, Claudia ; Jimenez-Tejero, Clara Estela ; Sallares, Valenti ; Melendez, Adria ; Ranero, Cesar R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-dfdb54db2c3e5bb5837b720004707c9bd624c9af6153711229313f864cf794f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic waves</topic><topic>Analytical models</topic><topic>Data models</topic><topic>Datasets</topic><topic>downward continuation (DC)</topic><topic>full-waveform inversion</topic><topic>Geology</topic><topic>Geometry</topic><topic>High resolution</topic><topic>inverse theory</topic><topic>Inversions</topic><topic>marine seismic data</topic><topic>Model accuracy</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>numerical modeling</topic><topic>Objective function</topic><topic>Ocean floor</topic><topic>P waves</topic><topic>Propagation</topic><topic>Records</topic><topic>Resolution</topic><topic>Seismic data</topic><topic>Seismic surveys</topic><topic>Seismic velocities</topic><topic>Seismograms</topic><topic>signal analysis</topic><topic>Streaming media</topic><topic>Tomography</topic><topic>Travel time</topic><topic>travel-time tomography (TTT)</topic><topic>Velocity</topic><topic>velocity models</topic><topic>Wave velocity</topic><topic>waveform tomography</topic><topic>Waveforms</topic><topic>Wavelengths</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gras, Claudia</creatorcontrib><creatorcontrib>Jimenez-Tejero, Clara Estela</creatorcontrib><creatorcontrib>Sallares, Valenti</creatorcontrib><creatorcontrib>Melendez, Adria</creatorcontrib><creatorcontrib>Ranero, Cesar R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gras, Claudia</au><au>Jimenez-Tejero, Clara Estela</au><au>Sallares, Valenti</au><au>Melendez, Adria</au><au>Ranero, Cesar R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a Practical Appraisal for Waveform Tomography of Band- and Offset-Limited Marine Seismic Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[We present a generalized workflow to retrieve high-resolution P-wave velocity (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ P}} </tex-math></inline-formula>) models of complex Earth's subsurface structures from traditional marine near-vertical seismic reflection experiments. These records have typically offsets too short to map refraction phases and lack low-frequency information. The workflow is composed of three steps: 1) downward continuation (DC) of seismic records to the seafloor to recover diving wave information; 2) travel-time tomography (TTT) of first arrivals obtained from DC data, to retrieve a kinematically correct model; and 3) full-waveform inversion (FWI) of the original streamer dataset, starting with the model obtained with TTT and sequentially introducing higher wavenumber details into the model. We show that the TTT allows overcoming the issues associated with the nonlinearity intrinsic to FWI. We also disentangle envelope and phase from the waveform to choose the objective function most suitable for FWI. We assess the accuracy of initial models and predict the quality of the FWI results by quantifying the early arrival cycle skipping between original and simulated data. The efficiency of the workflow is tested with a challenging synthetic target model, containing vertical boundaries with strong velocity contrasts and velocity inversions embedded in a checkerboard-like pattern. We show that workflow steps 1) and 2) provide a TTT model that is not cycle skipped at the frequencies available in most marine seismic experiments and thus allow step 3) FWI to obtain high-resolution <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ P}} </tex-math></inline-formula> models of the subsurface using band- and offset-limited field datasets, traditionally collected in marine airgun and streamer acquisitions.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3097966</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8193-415X</orcidid><orcidid>https://orcid.org/0000-0002-2011-1416</orcidid><orcidid>https://orcid.org/0000-0003-0075-5705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2624756652
source IEEE Electronic Library (IEL)
subjects Acoustic waves
Analytical models
Data models
Datasets
downward continuation (DC)
full-waveform inversion
Geology
Geometry
High resolution
inverse theory
Inversions
marine seismic data
Model accuracy
Nonlinear systems
Nonlinearity
numerical modeling
Objective function
Ocean floor
P waves
Propagation
Records
Resolution
Seismic data
Seismic surveys
Seismic velocities
Seismograms
signal analysis
Streaming media
Tomography
Travel time
travel-time tomography (TTT)
Velocity
velocity models
Wave velocity
waveform tomography
Waveforms
Wavelengths
Workflow
title Toward a Practical Appraisal for Waveform Tomography of Band- and Offset-Limited Marine Seismic Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20Practical%20Appraisal%20for%20Waveform%20Tomography%20of%20Band-%20and%20Offset-Limited%20Marine%20Seismic%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Gras,%20Claudia&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3097966&rft_dat=%3Cproquest_RIE%3E2624756652%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624756652&rft_id=info:pmid/&rft_ieee_id=9572373&rfr_iscdi=true