Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data
A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-17 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Manninen, Terhikki Jaaskelainen, Emmihenna Lohila, Annalea Korkiakoski, Mika Rasanen, Aleksi Virtanen, Tarmo Muhic, Filip Marttila, Hannu Ala-Aho, Pertti Markovaara-Koivisto, Mira Liwata-Kenttala, Pauliina Sutinen, Raimo Hanninen, Pekka |
description | A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination ( R^{2} ) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes. |
doi_str_mv | 10.1109/TGRS.2021.3109695 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2624756500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9538402</ieee_id><sourcerecordid>2624756500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-25ba49e5948a03e5d05a4c09b66ee33c05384e66f718012648019ce26bd7539f3</originalsourceid><addsrcrecordid>eNo9UEtOwzAQtRBIlM8BEBtLrFNsx3bjZVWgRWqp1ADbyHEnrVEaF9upxCm4MglFbGY08z4zegjdUDKklKj71-kqHzLC6DDtRqnECRpQIbKESM5P0YBQJROWKXaOLkL4IIRyQUcD9P0O_gvP7GaL872OVtd4BcHVbbSuwbmzNV44G2LrAS_LAP6gfxFX4RlE8G4DDbg24LwttTfRGjzR0Wx30ET8FmyzwS-uqZ3pjMcH8HrTr3Szxou2jjbCbu98h-XjFX7QUV-hs0rXAa7_-iV6e3p8ncyS-XL6PBnPE5NmPCZMlJorEIpnmqQg1kRobogqpQRIU0NERwMpqxHNCGWSd1UZYLJcj0SqqvQS3R199959thBi8eFa33QnCyYZHwkpCOlY9Mgy3oXgoSr23u60_yooKfrciz73os-9-Mu909weNRYA_vmqf4iw9Aeh9oAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624756500</pqid></control><display><type>article</type><title>Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data</title><source>IEEE Electronic Library (IEL)</source><creator>Manninen, Terhikki ; Jaaskelainen, Emmihenna ; Lohila, Annalea ; Korkiakoski, Mika ; Rasanen, Aleksi ; Virtanen, Tarmo ; Muhic, Filip ; Marttila, Hannu ; Ala-Aho, Pertti ; Markovaara-Koivisto, Mira ; Liwata-Kenttala, Pauliina ; Sutinen, Raimo ; Hanninen, Pekka</creator><creatorcontrib>Manninen, Terhikki ; Jaaskelainen, Emmihenna ; Lohila, Annalea ; Korkiakoski, Mika ; Rasanen, Aleksi ; Virtanen, Tarmo ; Muhic, Filip ; Marttila, Hannu ; Ala-Aho, Pertti ; Markovaara-Koivisto, Mira ; Liwata-Kenttala, Pauliina ; Sutinen, Raimo ; Hanninen, Pekka</creatorcontrib><description>A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3109695</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Catchment area ; Forestry ; High resolution ; Hydrology ; Learning algorithms ; Machine learning ; Moisture ; nonlocal mean filtering ; Pixels ; Resolution ; Root-mean-square errors ; SAR (radar) ; Soil ; Soil measurements ; Soil moisture ; Soil surfaces ; Spatial discrimination ; Spatial resolution ; Statistical methods ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; temporal classification ; Training ; Tundra ; Vegetation mapping</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-25ba49e5948a03e5d05a4c09b66ee33c05384e66f718012648019ce26bd7539f3</citedby><cites>FETCH-LOGICAL-c384t-25ba49e5948a03e5d05a4c09b66ee33c05384e66f718012648019ce26bd7539f3</cites><orcidid>0000-0002-1766-2292 ; 0000-0001-6875-9978 ; 0000-0002-3629-1837 ; 0000-0002-9834-3372 ; 0000-0001-8945-9122 ; 0000-0001-9840-1598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9538402$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9538402$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manninen, Terhikki</creatorcontrib><creatorcontrib>Jaaskelainen, Emmihenna</creatorcontrib><creatorcontrib>Lohila, Annalea</creatorcontrib><creatorcontrib>Korkiakoski, Mika</creatorcontrib><creatorcontrib>Rasanen, Aleksi</creatorcontrib><creatorcontrib>Virtanen, Tarmo</creatorcontrib><creatorcontrib>Muhic, Filip</creatorcontrib><creatorcontrib>Marttila, Hannu</creatorcontrib><creatorcontrib>Ala-Aho, Pertti</creatorcontrib><creatorcontrib>Markovaara-Koivisto, Mira</creatorcontrib><creatorcontrib>Liwata-Kenttala, Pauliina</creatorcontrib><creatorcontrib>Sutinen, Raimo</creatorcontrib><creatorcontrib>Hanninen, Pekka</creatorcontrib><title>Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.</description><subject>Algorithms</subject><subject>Catchment area</subject><subject>Forestry</subject><subject>High resolution</subject><subject>Hydrology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Moisture</subject><subject>nonlocal mean filtering</subject><subject>Pixels</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>SAR (radar)</subject><subject>Soil</subject><subject>Soil measurements</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Statistical methods</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>temporal classification</subject><subject>Training</subject><subject>Tundra</subject><subject>Vegetation mapping</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UEtOwzAQtRBIlM8BEBtLrFNsx3bjZVWgRWqp1ADbyHEnrVEaF9upxCm4MglFbGY08z4zegjdUDKklKj71-kqHzLC6DDtRqnECRpQIbKESM5P0YBQJROWKXaOLkL4IIRyQUcD9P0O_gvP7GaL872OVtd4BcHVbbSuwbmzNV44G2LrAS_LAP6gfxFX4RlE8G4DDbg24LwttTfRGjzR0Wx30ET8FmyzwS-uqZ3pjMcH8HrTr3Szxou2jjbCbu98h-XjFX7QUV-hs0rXAa7_-iV6e3p8ncyS-XL6PBnPE5NmPCZMlJorEIpnmqQg1kRobogqpQRIU0NERwMpqxHNCGWSd1UZYLJcj0SqqvQS3R199959thBi8eFa33QnCyYZHwkpCOlY9Mgy3oXgoSr23u60_yooKfrciz73os-9-Mu909weNRYA_vmqf4iw9Aeh9oAE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Manninen, Terhikki</creator><creator>Jaaskelainen, Emmihenna</creator><creator>Lohila, Annalea</creator><creator>Korkiakoski, Mika</creator><creator>Rasanen, Aleksi</creator><creator>Virtanen, Tarmo</creator><creator>Muhic, Filip</creator><creator>Marttila, Hannu</creator><creator>Ala-Aho, Pertti</creator><creator>Markovaara-Koivisto, Mira</creator><creator>Liwata-Kenttala, Pauliina</creator><creator>Sutinen, Raimo</creator><creator>Hanninen, Pekka</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1766-2292</orcidid><orcidid>https://orcid.org/0000-0001-6875-9978</orcidid><orcidid>https://orcid.org/0000-0002-3629-1837</orcidid><orcidid>https://orcid.org/0000-0002-9834-3372</orcidid><orcidid>https://orcid.org/0000-0001-8945-9122</orcidid><orcidid>https://orcid.org/0000-0001-9840-1598</orcidid></search><sort><creationdate>2022</creationdate><title>Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data</title><author>Manninen, Terhikki ; Jaaskelainen, Emmihenna ; Lohila, Annalea ; Korkiakoski, Mika ; Rasanen, Aleksi ; Virtanen, Tarmo ; Muhic, Filip ; Marttila, Hannu ; Ala-Aho, Pertti ; Markovaara-Koivisto, Mira ; Liwata-Kenttala, Pauliina ; Sutinen, Raimo ; Hanninen, Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-25ba49e5948a03e5d05a4c09b66ee33c05384e66f718012648019ce26bd7539f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Catchment area</topic><topic>Forestry</topic><topic>High resolution</topic><topic>Hydrology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Moisture</topic><topic>nonlocal mean filtering</topic><topic>Pixels</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>SAR (radar)</topic><topic>Soil</topic><topic>Soil measurements</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Statistical methods</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>temporal classification</topic><topic>Training</topic><topic>Tundra</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manninen, Terhikki</creatorcontrib><creatorcontrib>Jaaskelainen, Emmihenna</creatorcontrib><creatorcontrib>Lohila, Annalea</creatorcontrib><creatorcontrib>Korkiakoski, Mika</creatorcontrib><creatorcontrib>Rasanen, Aleksi</creatorcontrib><creatorcontrib>Virtanen, Tarmo</creatorcontrib><creatorcontrib>Muhic, Filip</creatorcontrib><creatorcontrib>Marttila, Hannu</creatorcontrib><creatorcontrib>Ala-Aho, Pertti</creatorcontrib><creatorcontrib>Markovaara-Koivisto, Mira</creatorcontrib><creatorcontrib>Liwata-Kenttala, Pauliina</creatorcontrib><creatorcontrib>Sutinen, Raimo</creatorcontrib><creatorcontrib>Hanninen, Pekka</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manninen, Terhikki</au><au>Jaaskelainen, Emmihenna</au><au>Lohila, Annalea</au><au>Korkiakoski, Mika</au><au>Rasanen, Aleksi</au><au>Virtanen, Tarmo</au><au>Muhic, Filip</au><au>Marttila, Hannu</au><au>Ala-Aho, Pertti</au><au>Markovaara-Koivisto, Mira</au><au>Liwata-Kenttala, Pauliina</au><au>Sutinen, Raimo</au><au>Hanninen, Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3109695</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1766-2292</orcidid><orcidid>https://orcid.org/0000-0001-6875-9978</orcidid><orcidid>https://orcid.org/0000-0002-3629-1837</orcidid><orcidid>https://orcid.org/0000-0002-9834-3372</orcidid><orcidid>https://orcid.org/0000-0001-8945-9122</orcidid><orcidid>https://orcid.org/0000-0001-9840-1598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2624756500 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Catchment area Forestry High resolution Hydrology Learning algorithms Machine learning Moisture nonlocal mean filtering Pixels Resolution Root-mean-square errors SAR (radar) Soil Soil measurements Soil moisture Soil surfaces Spatial discrimination Spatial resolution Statistical methods Synthetic aperture radar synthetic aperture radar (SAR) temporal classification Training Tundra Vegetation mapping |
title | Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20High%20Spatial%20Resolution%20Soil%20Moisture%20Observation%20of%20Heterogeneous%20Subarctic%20Catchment%20Using%20Nonlocal%20Averaging%20and%20Multitemporal%20SAR%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Manninen,%20Terhikki&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3109695&rft_dat=%3Cproquest_RIE%3E2624756500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624756500&rft_id=info:pmid/&rft_ieee_id=9538402&rfr_iscdi=true |