Aromatic tetra-glycidyl ether versus tetra-glycidyl amine epoxy networks: Influence of monomer structure and epoxide conversion

In this work, two epoxy resins, bis(2,7 glycidyl ether naphthalenediol) methane (NNE), tetraglycidyl diaminodiphenylmethane (TGDDM) and a miscible blend of the two are cured with 4,4′-diaminodiphenylsulfone (DDS) to investigate the differences between glycidyl ether and glycidyl amine crosslinked ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2022-01, Vol.239, p.124401, Article 124401
Hauptverfasser: Swan, Samuel R., Creighton, Claudia, Griffin, James M., Gashi, Bekim V., Varley, Russell J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 124401
container_title Polymer (Guilford)
container_volume 239
creator Swan, Samuel R.
Creighton, Claudia
Griffin, James M.
Gashi, Bekim V.
Varley, Russell J.
description In this work, two epoxy resins, bis(2,7 glycidyl ether naphthalenediol) methane (NNE), tetraglycidyl diaminodiphenylmethane (TGDDM) and a miscible blend of the two are cured with 4,4′-diaminodiphenylsulfone (DDS) to investigate the differences between glycidyl ether and glycidyl amine crosslinked networks. This work explores in depth, and directly compares for the first time, the structure/property relationships of a highly aromatic and thermally stable glycidyl ether epoxy network with a well-known highly aromatic and thermally stable glycidyl amine epoxy network. The highly aromatic naphthalene motif of NNE imparts improved thermal stability and a significantly higher glass transition temperature, above 340 °C depending on the measurement technique. However, it also produces comparatively lower epoxide conversion, higher moisture ingress and lower flexural properties. These properties are attributed to the NNE having higher free volume and glassy state mobility as suggested by the sub-ambient β relaxations. The glycidyl ether groups react primarily via epoxide amino addition displaying only very minor evidence of homopolymerisation or other side reactions even at 240 °C. This contrasts with the glycidyl amine groups of TGDDM which exhibit a much higher degree of non-epoxy amine addition. Increasing cure conversion also increases the glass transition temperature, fracture toughness and reduced coefficient of thermal expansion. Overall, the results show that despite some reduced mechanical and thermal properties the NNE epoxy resin system is a very thermally stable high temperature epoxy resin based upon glycidyl ether functional groups suitable for a wide range of new applications. [Display omitted] •Direct comparison of glycidyl ether and glycidyl amine high Tg epoxy networks.•Bis-naphthalene based epoxy network greatly increases Tg and thermal stability.•Tetra functional glycidyl ether groups much less susceptible to homopolymerisation or cyclisation.•Higher Tc required to achieve full cure and overcome topological constraints for bis-naphthalene epoxy resins.•Bis-naphthalene glycidyl ether networks have similar toughness, but lower flexural properties.
doi_str_mv 10.1016/j.polymer.2021.124401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624687846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386121010247</els_id><sourcerecordid>2624687846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-acdff4bb248584839a2b0fac147cece2348b02bf8abe6760368ffa7d13f63123</originalsourceid><addsrcrecordid>eNqFkDtPwzAQxy0EEqXwEZAsMaf4VcewIIR4SUgs7JbjnMElsYvtAJn46qSUiYXphv_j7n4IHVOyoITK09ViHbuxh7RghNEFZUIQuoNmVNW8YuyM7qIZIZxVXEm6jw5yXhFC2JKJGfq6TLE3xVtcoCRTPXej9e3YYSgvkPA7pDzkv5rpfQAM6_g54gDlI6bXfI7vg-sGCBZwdLiPIU4X4VzSYMuQAJvQ_kR8C9jGsGn2MRyiPWe6DEe_c46ebq6fru6qh8fb-6vLh8qKJSmVsa1zommYUEslFD8zrCHOWCpqCxYYF6ohrHHKNCBrSbhUzpm6pdxJThmfo5Nt7TrFtwFy0as4pDBt1EwyIVWthJxcy63LpphzAqfXyfcmjZoSvUGtV_oXtd6g1lvUU-5im4Ppg3c_qdn6DYnWJ7BFt9H_0_ANj7SOJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624687846</pqid></control><display><type>article</type><title>Aromatic tetra-glycidyl ether versus tetra-glycidyl amine epoxy networks: Influence of monomer structure and epoxide conversion</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Swan, Samuel R. ; Creighton, Claudia ; Griffin, James M. ; Gashi, Bekim V. ; Varley, Russell J.</creator><creatorcontrib>Swan, Samuel R. ; Creighton, Claudia ; Griffin, James M. ; Gashi, Bekim V. ; Varley, Russell J.</creatorcontrib><description>In this work, two epoxy resins, bis(2,7 glycidyl ether naphthalenediol) methane (NNE), tetraglycidyl diaminodiphenylmethane (TGDDM) and a miscible blend of the two are cured with 4,4′-diaminodiphenylsulfone (DDS) to investigate the differences between glycidyl ether and glycidyl amine crosslinked networks. This work explores in depth, and directly compares for the first time, the structure/property relationships of a highly aromatic and thermally stable glycidyl ether epoxy network with a well-known highly aromatic and thermally stable glycidyl amine epoxy network. The highly aromatic naphthalene motif of NNE imparts improved thermal stability and a significantly higher glass transition temperature, above 340 °C depending on the measurement technique. However, it also produces comparatively lower epoxide conversion, higher moisture ingress and lower flexural properties. These properties are attributed to the NNE having higher free volume and glassy state mobility as suggested by the sub-ambient β relaxations. The glycidyl ether groups react primarily via epoxide amino addition displaying only very minor evidence of homopolymerisation or other side reactions even at 240 °C. This contrasts with the glycidyl amine groups of TGDDM which exhibit a much higher degree of non-epoxy amine addition. Increasing cure conversion also increases the glass transition temperature, fracture toughness and reduced coefficient of thermal expansion. Overall, the results show that despite some reduced mechanical and thermal properties the NNE epoxy resin system is a very thermally stable high temperature epoxy resin based upon glycidyl ether functional groups suitable for a wide range of new applications. [Display omitted] •Direct comparison of glycidyl ether and glycidyl amine high Tg epoxy networks.•Bis-naphthalene based epoxy network greatly increases Tg and thermal stability.•Tetra functional glycidyl ether groups much less susceptible to homopolymerisation or cyclisation.•Higher Tc required to achieve full cure and overcome topological constraints for bis-naphthalene epoxy resins.•Bis-naphthalene glycidyl ether networks have similar toughness, but lower flexural properties.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2021.124401</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Conversion ; Diaminodiphenylsulfone ; Epoxy resins ; Fracture toughness ; Functional groups ; Glass transition temperature ; High temperature ; Measurement techniques ; Methylene dianiline ; Moisture ingress ; Naphthalene ; Side reactions ; Structure-property relations ; Temperature ; Thermal expansion ; Thermal properties ; Thermal stability ; Thermodynamic properties ; Transition temperatures</subject><ispartof>Polymer (Guilford), 2022-01, Vol.239, p.124401, Article 124401</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 17, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-acdff4bb248584839a2b0fac147cece2348b02bf8abe6760368ffa7d13f63123</citedby><cites>FETCH-LOGICAL-c450t-acdff4bb248584839a2b0fac147cece2348b02bf8abe6760368ffa7d13f63123</cites><orcidid>0000-0002-9179-5130 ; 0000-0002-3792-1140 ; 0000-0003-1186-6558 ; 0000-0002-3848-2696 ; 0000-0003-2184-255X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2021.124401$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Swan, Samuel R.</creatorcontrib><creatorcontrib>Creighton, Claudia</creatorcontrib><creatorcontrib>Griffin, James M.</creatorcontrib><creatorcontrib>Gashi, Bekim V.</creatorcontrib><creatorcontrib>Varley, Russell J.</creatorcontrib><title>Aromatic tetra-glycidyl ether versus tetra-glycidyl amine epoxy networks: Influence of monomer structure and epoxide conversion</title><title>Polymer (Guilford)</title><description>In this work, two epoxy resins, bis(2,7 glycidyl ether naphthalenediol) methane (NNE), tetraglycidyl diaminodiphenylmethane (TGDDM) and a miscible blend of the two are cured with 4,4′-diaminodiphenylsulfone (DDS) to investigate the differences between glycidyl ether and glycidyl amine crosslinked networks. This work explores in depth, and directly compares for the first time, the structure/property relationships of a highly aromatic and thermally stable glycidyl ether epoxy network with a well-known highly aromatic and thermally stable glycidyl amine epoxy network. The highly aromatic naphthalene motif of NNE imparts improved thermal stability and a significantly higher glass transition temperature, above 340 °C depending on the measurement technique. However, it also produces comparatively lower epoxide conversion, higher moisture ingress and lower flexural properties. These properties are attributed to the NNE having higher free volume and glassy state mobility as suggested by the sub-ambient β relaxations. The glycidyl ether groups react primarily via epoxide amino addition displaying only very minor evidence of homopolymerisation or other side reactions even at 240 °C. This contrasts with the glycidyl amine groups of TGDDM which exhibit a much higher degree of non-epoxy amine addition. Increasing cure conversion also increases the glass transition temperature, fracture toughness and reduced coefficient of thermal expansion. Overall, the results show that despite some reduced mechanical and thermal properties the NNE epoxy resin system is a very thermally stable high temperature epoxy resin based upon glycidyl ether functional groups suitable for a wide range of new applications. [Display omitted] •Direct comparison of glycidyl ether and glycidyl amine high Tg epoxy networks.•Bis-naphthalene based epoxy network greatly increases Tg and thermal stability.•Tetra functional glycidyl ether groups much less susceptible to homopolymerisation or cyclisation.•Higher Tc required to achieve full cure and overcome topological constraints for bis-naphthalene epoxy resins.•Bis-naphthalene glycidyl ether networks have similar toughness, but lower flexural properties.</description><subject>Conversion</subject><subject>Diaminodiphenylsulfone</subject><subject>Epoxy resins</subject><subject>Fracture toughness</subject><subject>Functional groups</subject><subject>Glass transition temperature</subject><subject>High temperature</subject><subject>Measurement techniques</subject><subject>Methylene dianiline</subject><subject>Moisture ingress</subject><subject>Naphthalene</subject><subject>Side reactions</subject><subject>Structure-property relations</subject><subject>Temperature</subject><subject>Thermal expansion</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Transition temperatures</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAQxy0EEqXwEZAsMaf4VcewIIR4SUgs7JbjnMElsYvtAJn46qSUiYXphv_j7n4IHVOyoITK09ViHbuxh7RghNEFZUIQuoNmVNW8YuyM7qIZIZxVXEm6jw5yXhFC2JKJGfq6TLE3xVtcoCRTPXej9e3YYSgvkPA7pDzkv5rpfQAM6_g54gDlI6bXfI7vg-sGCBZwdLiPIU4X4VzSYMuQAJvQ_kR8C9jGsGn2MRyiPWe6DEe_c46ebq6fru6qh8fb-6vLh8qKJSmVsa1zommYUEslFD8zrCHOWCpqCxYYF6ohrHHKNCBrSbhUzpm6pdxJThmfo5Nt7TrFtwFy0as4pDBt1EwyIVWthJxcy63LpphzAqfXyfcmjZoSvUGtV_oXtd6g1lvUU-5im4Ppg3c_qdn6DYnWJ7BFt9H_0_ANj7SOJQ</recordid><startdate>20220117</startdate><enddate>20220117</enddate><creator>Swan, Samuel R.</creator><creator>Creighton, Claudia</creator><creator>Griffin, James M.</creator><creator>Gashi, Bekim V.</creator><creator>Varley, Russell J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9179-5130</orcidid><orcidid>https://orcid.org/0000-0002-3792-1140</orcidid><orcidid>https://orcid.org/0000-0003-1186-6558</orcidid><orcidid>https://orcid.org/0000-0002-3848-2696</orcidid><orcidid>https://orcid.org/0000-0003-2184-255X</orcidid></search><sort><creationdate>20220117</creationdate><title>Aromatic tetra-glycidyl ether versus tetra-glycidyl amine epoxy networks: Influence of monomer structure and epoxide conversion</title><author>Swan, Samuel R. ; Creighton, Claudia ; Griffin, James M. ; Gashi, Bekim V. ; Varley, Russell J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-acdff4bb248584839a2b0fac147cece2348b02bf8abe6760368ffa7d13f63123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conversion</topic><topic>Diaminodiphenylsulfone</topic><topic>Epoxy resins</topic><topic>Fracture toughness</topic><topic>Functional groups</topic><topic>Glass transition temperature</topic><topic>High temperature</topic><topic>Measurement techniques</topic><topic>Methylene dianiline</topic><topic>Moisture ingress</topic><topic>Naphthalene</topic><topic>Side reactions</topic><topic>Structure-property relations</topic><topic>Temperature</topic><topic>Thermal expansion</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swan, Samuel R.</creatorcontrib><creatorcontrib>Creighton, Claudia</creatorcontrib><creatorcontrib>Griffin, James M.</creatorcontrib><creatorcontrib>Gashi, Bekim V.</creatorcontrib><creatorcontrib>Varley, Russell J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swan, Samuel R.</au><au>Creighton, Claudia</au><au>Griffin, James M.</au><au>Gashi, Bekim V.</au><au>Varley, Russell J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aromatic tetra-glycidyl ether versus tetra-glycidyl amine epoxy networks: Influence of monomer structure and epoxide conversion</atitle><jtitle>Polymer (Guilford)</jtitle><date>2022-01-17</date><risdate>2022</risdate><volume>239</volume><spage>124401</spage><pages>124401-</pages><artnum>124401</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>In this work, two epoxy resins, bis(2,7 glycidyl ether naphthalenediol) methane (NNE), tetraglycidyl diaminodiphenylmethane (TGDDM) and a miscible blend of the two are cured with 4,4′-diaminodiphenylsulfone (DDS) to investigate the differences between glycidyl ether and glycidyl amine crosslinked networks. This work explores in depth, and directly compares for the first time, the structure/property relationships of a highly aromatic and thermally stable glycidyl ether epoxy network with a well-known highly aromatic and thermally stable glycidyl amine epoxy network. The highly aromatic naphthalene motif of NNE imparts improved thermal stability and a significantly higher glass transition temperature, above 340 °C depending on the measurement technique. However, it also produces comparatively lower epoxide conversion, higher moisture ingress and lower flexural properties. These properties are attributed to the NNE having higher free volume and glassy state mobility as suggested by the sub-ambient β relaxations. The glycidyl ether groups react primarily via epoxide amino addition displaying only very minor evidence of homopolymerisation or other side reactions even at 240 °C. This contrasts with the glycidyl amine groups of TGDDM which exhibit a much higher degree of non-epoxy amine addition. Increasing cure conversion also increases the glass transition temperature, fracture toughness and reduced coefficient of thermal expansion. Overall, the results show that despite some reduced mechanical and thermal properties the NNE epoxy resin system is a very thermally stable high temperature epoxy resin based upon glycidyl ether functional groups suitable for a wide range of new applications. [Display omitted] •Direct comparison of glycidyl ether and glycidyl amine high Tg epoxy networks.•Bis-naphthalene based epoxy network greatly increases Tg and thermal stability.•Tetra functional glycidyl ether groups much less susceptible to homopolymerisation or cyclisation.•Higher Tc required to achieve full cure and overcome topological constraints for bis-naphthalene epoxy resins.•Bis-naphthalene glycidyl ether networks have similar toughness, but lower flexural properties.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2021.124401</doi><orcidid>https://orcid.org/0000-0002-9179-5130</orcidid><orcidid>https://orcid.org/0000-0002-3792-1140</orcidid><orcidid>https://orcid.org/0000-0003-1186-6558</orcidid><orcidid>https://orcid.org/0000-0002-3848-2696</orcidid><orcidid>https://orcid.org/0000-0003-2184-255X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2022-01, Vol.239, p.124401, Article 124401
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2624687846
source ScienceDirect Freedom Collection (Elsevier)
subjects Conversion
Diaminodiphenylsulfone
Epoxy resins
Fracture toughness
Functional groups
Glass transition temperature
High temperature
Measurement techniques
Methylene dianiline
Moisture ingress
Naphthalene
Side reactions
Structure-property relations
Temperature
Thermal expansion
Thermal properties
Thermal stability
Thermodynamic properties
Transition temperatures
title Aromatic tetra-glycidyl ether versus tetra-glycidyl amine epoxy networks: Influence of monomer structure and epoxide conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aromatic%20tetra-glycidyl%20ether%20versus%20tetra-glycidyl%20amine%20epoxy%20networks:%20Influence%20of%20monomer%20structure%20and%20epoxide%20conversion&rft.jtitle=Polymer%20(Guilford)&rft.au=Swan,%20Samuel%20R.&rft.date=2022-01-17&rft.volume=239&rft.spage=124401&rft.pages=124401-&rft.artnum=124401&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2021.124401&rft_dat=%3Cproquest_cross%3E2624687846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624687846&rft_id=info:pmid/&rft_els_id=S0032386121010247&rfr_iscdi=true