Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction
Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of...
Gespeichert in:
Veröffentlicht in: | Synthetic metals 2021-12, Vol.282, p.116959, Article 116959 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116959 |
container_title | Synthetic metals |
container_volume | 282 |
creator | Hefnawy, Mahmoud A. Fadlallah, Sahar A. El-Sherif, Rabab M. Medany, Shymaa S. |
description | Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of the prepared modified electrodes were characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Raman spectroscopy, and differential scanning calorimetry (DSC). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) were used to examine the electrochemical behavior of the prepared electrodes. Furthermore, the Ni-Mn double hydroxide loaded RGO showed a remarked performance as a dual catalyst towards cathodic and anodic reactions, i.e., ethylene glycol electrooxidation and Hydrogen evolution reaction (HER). Additionally, the activity of RGO-NiMn double hydroxide towards ethylene glycol electrooxidation was achieved to 38 mA cm−2 in 1.0 M KOH at a potential of 500 mV (vs. Ag/AgCl). At the same time, the recorded potential of the electrode for hydrogen evolution was − 600 mV (vs. Ag/AgCl) at the current density of 10 mA cm−2.
•Nickel manganese double hydroxide nanoparticles synthesized for ethylene glycol electrooxidation and hydrogen energy reaction.•Electrochemical impedance spectroscopy studies for ethylene glycol electrooxidation.•Electrochemical oxidation [1–74] over nickel-based catalysts. |
doi_str_mv | 10.1016/j.synthmet.2021.116959 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624685754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379677921002654</els_id><sourcerecordid>2624685754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-83c3ec558a7a5bf546d89b7176535962857062551bfab91c2db1a90c2a942a3e3</originalsourceid><addsrcrecordid>eNqFkcFu3CAURVHVSJ2m_YUKqWtPABtsdq2iNqkUpZt2jTB-HjNlYAo4jX8nX1pcN-useKBz7xP3IvSBkj0lVFwd92nxeTpB3jPC6J5SIbl8hXa0a2VVM0leox2pyyzaVr5Bb1M6EkKoZHyHnu6t-QWuOml_0B4S4CHMvQM8LUMMj3YAfLKPMOA_Nk84wjCbcjlEfZ7AA94IcGByDEZn7ZaU8RgihnG0xoLPGPK0uBU-uMUE90yvUp1t8Fj7YVt3AI_hIbj533MEbdbhHboYtUvw_v95iX5-_fLj-ra6-37z7frzXWXqhuSqq00NhvNOt5r3I2_E0Mm-pa3gNZeCdbwlgnFO-1H3kho29FRLYpiWDdM11Jfo4-Z7juH3DCmrY5ijLysVE6wRxYA3hRIbZWJIKcKoztGedFwUJWrtQx3Vcx9q7UNtfRThp00I5Q8PFqJKaz4lThtLIGoI9iWLv4NtnMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624685754</pqid></control><display><type>article</type><title>Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction</title><source>Elsevier ScienceDirect Journals</source><creator>Hefnawy, Mahmoud A. ; Fadlallah, Sahar A. ; El-Sherif, Rabab M. ; Medany, Shymaa S.</creator><creatorcontrib>Hefnawy, Mahmoud A. ; Fadlallah, Sahar A. ; El-Sherif, Rabab M. ; Medany, Shymaa S.</creatorcontrib><description>Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of the prepared modified electrodes were characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Raman spectroscopy, and differential scanning calorimetry (DSC). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) were used to examine the electrochemical behavior of the prepared electrodes. Furthermore, the Ni-Mn double hydroxide loaded RGO showed a remarked performance as a dual catalyst towards cathodic and anodic reactions, i.e., ethylene glycol electrooxidation and Hydrogen evolution reaction (HER). Additionally, the activity of RGO-NiMn double hydroxide towards ethylene glycol electrooxidation was achieved to 38 mA cm−2 in 1.0 M KOH at a potential of 500 mV (vs. Ag/AgCl). At the same time, the recorded potential of the electrode for hydrogen evolution was − 600 mV (vs. Ag/AgCl) at the current density of 10 mA cm−2.
•Nickel manganese double hydroxide nanoparticles synthesized for ethylene glycol electrooxidation and hydrogen energy reaction.•Electrochemical impedance spectroscopy studies for ethylene glycol electrooxidation.•Electrochemical oxidation [1–74] over nickel-based catalysts.</description><identifier>ISSN: 0379-6779</identifier><identifier>EISSN: 1879-3290</identifier><identifier>DOI: 10.1016/j.synthmet.2021.116959</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Binary hydroxides ; Catalysts ; Chemical synthesis ; Electrocatalyst ; Electrocatalysts ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrodes ; Ethylene glycol ; Ethylene glycol electro-oxidation ; Fuel cell ; Graphene ; Hydrogen ; Hydrogen evolution reaction ; Hydrogen evolution reactions ; Manganese ; Ni-Mn ; Nickel ; Raman spectroscopy ; Silver chloride ; Spectrum analysis ; Voltammetry</subject><ispartof>Synthetic metals, 2021-12, Vol.282, p.116959, Article 116959</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-83c3ec558a7a5bf546d89b7176535962857062551bfab91c2db1a90c2a942a3e3</citedby><cites>FETCH-LOGICAL-c340t-83c3ec558a7a5bf546d89b7176535962857062551bfab91c2db1a90c2a942a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0379677921002654$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Hefnawy, Mahmoud A.</creatorcontrib><creatorcontrib>Fadlallah, Sahar A.</creatorcontrib><creatorcontrib>El-Sherif, Rabab M.</creatorcontrib><creatorcontrib>Medany, Shymaa S.</creatorcontrib><title>Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction</title><title>Synthetic metals</title><description>Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of the prepared modified electrodes were characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Raman spectroscopy, and differential scanning calorimetry (DSC). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) were used to examine the electrochemical behavior of the prepared electrodes. Furthermore, the Ni-Mn double hydroxide loaded RGO showed a remarked performance as a dual catalyst towards cathodic and anodic reactions, i.e., ethylene glycol electrooxidation and Hydrogen evolution reaction (HER). Additionally, the activity of RGO-NiMn double hydroxide towards ethylene glycol electrooxidation was achieved to 38 mA cm−2 in 1.0 M KOH at a potential of 500 mV (vs. Ag/AgCl). At the same time, the recorded potential of the electrode for hydrogen evolution was − 600 mV (vs. Ag/AgCl) at the current density of 10 mA cm−2.
•Nickel manganese double hydroxide nanoparticles synthesized for ethylene glycol electrooxidation and hydrogen energy reaction.•Electrochemical impedance spectroscopy studies for ethylene glycol electrooxidation.•Electrochemical oxidation [1–74] over nickel-based catalysts.</description><subject>Binary hydroxides</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Electrocatalyst</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Ethylene glycol</subject><subject>Ethylene glycol electro-oxidation</subject><subject>Fuel cell</subject><subject>Graphene</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese</subject><subject>Ni-Mn</subject><subject>Nickel</subject><subject>Raman spectroscopy</subject><subject>Silver chloride</subject><subject>Spectrum analysis</subject><subject>Voltammetry</subject><issn>0379-6779</issn><issn>1879-3290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAURVHVSJ2m_YUKqWtPABtsdq2iNqkUpZt2jTB-HjNlYAo4jX8nX1pcN-useKBz7xP3IvSBkj0lVFwd92nxeTpB3jPC6J5SIbl8hXa0a2VVM0leox2pyyzaVr5Bb1M6EkKoZHyHnu6t-QWuOml_0B4S4CHMvQM8LUMMj3YAfLKPMOA_Nk84wjCbcjlEfZ7AA94IcGByDEZn7ZaU8RgihnG0xoLPGPK0uBU-uMUE90yvUp1t8Fj7YVt3AI_hIbj533MEbdbhHboYtUvw_v95iX5-_fLj-ra6-37z7frzXWXqhuSqq00NhvNOt5r3I2_E0Mm-pa3gNZeCdbwlgnFO-1H3kho29FRLYpiWDdM11Jfo4-Z7juH3DCmrY5ijLysVE6wRxYA3hRIbZWJIKcKoztGedFwUJWrtQx3Vcx9q7UNtfRThp00I5Q8PFqJKaz4lThtLIGoI9iWLv4NtnMI</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Hefnawy, Mahmoud A.</creator><creator>Fadlallah, Sahar A.</creator><creator>El-Sherif, Rabab M.</creator><creator>Medany, Shymaa S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202112</creationdate><title>Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction</title><author>Hefnawy, Mahmoud A. ; Fadlallah, Sahar A. ; El-Sherif, Rabab M. ; Medany, Shymaa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-83c3ec558a7a5bf546d89b7176535962857062551bfab91c2db1a90c2a942a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary hydroxides</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Electrocatalyst</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Ethylene glycol</topic><topic>Ethylene glycol electro-oxidation</topic><topic>Fuel cell</topic><topic>Graphene</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese</topic><topic>Ni-Mn</topic><topic>Nickel</topic><topic>Raman spectroscopy</topic><topic>Silver chloride</topic><topic>Spectrum analysis</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hefnawy, Mahmoud A.</creatorcontrib><creatorcontrib>Fadlallah, Sahar A.</creatorcontrib><creatorcontrib>El-Sherif, Rabab M.</creatorcontrib><creatorcontrib>Medany, Shymaa S.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Synthetic metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hefnawy, Mahmoud A.</au><au>Fadlallah, Sahar A.</au><au>El-Sherif, Rabab M.</au><au>Medany, Shymaa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction</atitle><jtitle>Synthetic metals</jtitle><date>2021-12</date><risdate>2021</risdate><volume>282</volume><spage>116959</spage><pages>116959-</pages><artnum>116959</artnum><issn>0379-6779</issn><eissn>1879-3290</eissn><abstract>Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of the prepared modified electrodes were characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Raman spectroscopy, and differential scanning calorimetry (DSC). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) were used to examine the electrochemical behavior of the prepared electrodes. Furthermore, the Ni-Mn double hydroxide loaded RGO showed a remarked performance as a dual catalyst towards cathodic and anodic reactions, i.e., ethylene glycol electrooxidation and Hydrogen evolution reaction (HER). Additionally, the activity of RGO-NiMn double hydroxide towards ethylene glycol electrooxidation was achieved to 38 mA cm−2 in 1.0 M KOH at a potential of 500 mV (vs. Ag/AgCl). At the same time, the recorded potential of the electrode for hydrogen evolution was − 600 mV (vs. Ag/AgCl) at the current density of 10 mA cm−2.
•Nickel manganese double hydroxide nanoparticles synthesized for ethylene glycol electrooxidation and hydrogen energy reaction.•Electrochemical impedance spectroscopy studies for ethylene glycol electrooxidation.•Electrochemical oxidation [1–74] over nickel-based catalysts.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.synthmet.2021.116959</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-6779 |
ispartof | Synthetic metals, 2021-12, Vol.282, p.116959, Article 116959 |
issn | 0379-6779 1879-3290 |
language | eng |
recordid | cdi_proquest_journals_2624685754 |
source | Elsevier ScienceDirect Journals |
subjects | Binary hydroxides Catalysts Chemical synthesis Electrocatalyst Electrocatalysts Electrochemical analysis Electrochemical impedance spectroscopy Electrodes Ethylene glycol Ethylene glycol electro-oxidation Fuel cell Graphene Hydrogen Hydrogen evolution reaction Hydrogen evolution reactions Manganese Ni-Mn Nickel Raman spectroscopy Silver chloride Spectrum analysis Voltammetry |
title | Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel-manganese%20double%20hydroxide%20mixed%20with%20reduced%20graphene%20oxide%20electrocatalyst%20for%20efficient%20ethylene%20glycol%20electrooxidation%20and%20hydrogen%20evolution%20reaction&rft.jtitle=Synthetic%20metals&rft.au=Hefnawy,%20Mahmoud%20A.&rft.date=2021-12&rft.volume=282&rft.spage=116959&rft.pages=116959-&rft.artnum=116959&rft.issn=0379-6779&rft.eissn=1879-3290&rft_id=info:doi/10.1016/j.synthmet.2021.116959&rft_dat=%3Cproquest_cross%3E2624685754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624685754&rft_id=info:pmid/&rft_els_id=S0379677921002654&rfr_iscdi=true |