Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction

Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthetic metals 2021-12, Vol.282, p.116959, Article 116959
Hauptverfasser: Hefnawy, Mahmoud A., Fadlallah, Sahar A., El-Sherif, Rabab M., Medany, Shymaa S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116959
container_title Synthetic metals
container_volume 282
creator Hefnawy, Mahmoud A.
Fadlallah, Sahar A.
El-Sherif, Rabab M.
Medany, Shymaa S.
description Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of the prepared modified electrodes were characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Raman spectroscopy, and differential scanning calorimetry (DSC). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) were used to examine the electrochemical behavior of the prepared electrodes. Furthermore, the Ni-Mn double hydroxide loaded RGO showed a remarked performance as a dual catalyst towards cathodic and anodic reactions, i.e., ethylene glycol electrooxidation and Hydrogen evolution reaction (HER). Additionally, the activity of RGO-NiMn double hydroxide towards ethylene glycol electrooxidation was achieved to 38 mA cm−2 in 1.0 M KOH at a potential of 500 mV (vs. Ag/AgCl). At the same time, the recorded potential of the electrode for hydrogen evolution was − 600 mV (vs. Ag/AgCl) at the current density of 10 mA cm−2. •Nickel manganese double hydroxide nanoparticles synthesized for ethylene glycol electrooxidation and hydrogen energy reaction.•Electrochemical impedance spectroscopy studies for ethylene glycol electrooxidation.•Electrochemical oxidation [1–74] over nickel-based catalysts.
doi_str_mv 10.1016/j.synthmet.2021.116959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624685754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379677921002654</els_id><sourcerecordid>2624685754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-83c3ec558a7a5bf546d89b7176535962857062551bfab91c2db1a90c2a942a3e3</originalsourceid><addsrcrecordid>eNqFkcFu3CAURVHVSJ2m_YUKqWtPABtsdq2iNqkUpZt2jTB-HjNlYAo4jX8nX1pcN-useKBz7xP3IvSBkj0lVFwd92nxeTpB3jPC6J5SIbl8hXa0a2VVM0leox2pyyzaVr5Bb1M6EkKoZHyHnu6t-QWuOml_0B4S4CHMvQM8LUMMj3YAfLKPMOA_Nk84wjCbcjlEfZ7AA94IcGByDEZn7ZaU8RgihnG0xoLPGPK0uBU-uMUE90yvUp1t8Fj7YVt3AI_hIbj533MEbdbhHboYtUvw_v95iX5-_fLj-ra6-37z7frzXWXqhuSqq00NhvNOt5r3I2_E0Mm-pa3gNZeCdbwlgnFO-1H3kho29FRLYpiWDdM11Jfo4-Z7juH3DCmrY5ijLysVE6wRxYA3hRIbZWJIKcKoztGedFwUJWrtQx3Vcx9q7UNtfRThp00I5Q8PFqJKaz4lThtLIGoI9iWLv4NtnMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624685754</pqid></control><display><type>article</type><title>Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction</title><source>Elsevier ScienceDirect Journals</source><creator>Hefnawy, Mahmoud A. ; Fadlallah, Sahar A. ; El-Sherif, Rabab M. ; Medany, Shymaa S.</creator><creatorcontrib>Hefnawy, Mahmoud A. ; Fadlallah, Sahar A. ; El-Sherif, Rabab M. ; Medany, Shymaa S.</creatorcontrib><description>Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of the prepared modified electrodes were characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Raman spectroscopy, and differential scanning calorimetry (DSC). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) were used to examine the electrochemical behavior of the prepared electrodes. Furthermore, the Ni-Mn double hydroxide loaded RGO showed a remarked performance as a dual catalyst towards cathodic and anodic reactions, i.e., ethylene glycol electrooxidation and Hydrogen evolution reaction (HER). Additionally, the activity of RGO-NiMn double hydroxide towards ethylene glycol electrooxidation was achieved to 38 mA cm−2 in 1.0 M KOH at a potential of 500 mV (vs. Ag/AgCl). At the same time, the recorded potential of the electrode for hydrogen evolution was − 600 mV (vs. Ag/AgCl) at the current density of 10 mA cm−2. •Nickel manganese double hydroxide nanoparticles synthesized for ethylene glycol electrooxidation and hydrogen energy reaction.•Electrochemical impedance spectroscopy studies for ethylene glycol electrooxidation.•Electrochemical oxidation [1–74] over nickel-based catalysts.</description><identifier>ISSN: 0379-6779</identifier><identifier>EISSN: 1879-3290</identifier><identifier>DOI: 10.1016/j.synthmet.2021.116959</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Binary hydroxides ; Catalysts ; Chemical synthesis ; Electrocatalyst ; Electrocatalysts ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrodes ; Ethylene glycol ; Ethylene glycol electro-oxidation ; Fuel cell ; Graphene ; Hydrogen ; Hydrogen evolution reaction ; Hydrogen evolution reactions ; Manganese ; Ni-Mn ; Nickel ; Raman spectroscopy ; Silver chloride ; Spectrum analysis ; Voltammetry</subject><ispartof>Synthetic metals, 2021-12, Vol.282, p.116959, Article 116959</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-83c3ec558a7a5bf546d89b7176535962857062551bfab91c2db1a90c2a942a3e3</citedby><cites>FETCH-LOGICAL-c340t-83c3ec558a7a5bf546d89b7176535962857062551bfab91c2db1a90c2a942a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0379677921002654$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Hefnawy, Mahmoud A.</creatorcontrib><creatorcontrib>Fadlallah, Sahar A.</creatorcontrib><creatorcontrib>El-Sherif, Rabab M.</creatorcontrib><creatorcontrib>Medany, Shymaa S.</creatorcontrib><title>Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction</title><title>Synthetic metals</title><description>Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of the prepared modified electrodes were characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Raman spectroscopy, and differential scanning calorimetry (DSC). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) were used to examine the electrochemical behavior of the prepared electrodes. Furthermore, the Ni-Mn double hydroxide loaded RGO showed a remarked performance as a dual catalyst towards cathodic and anodic reactions, i.e., ethylene glycol electrooxidation and Hydrogen evolution reaction (HER). Additionally, the activity of RGO-NiMn double hydroxide towards ethylene glycol electrooxidation was achieved to 38 mA cm−2 in 1.0 M KOH at a potential of 500 mV (vs. Ag/AgCl). At the same time, the recorded potential of the electrode for hydrogen evolution was − 600 mV (vs. Ag/AgCl) at the current density of 10 mA cm−2. •Nickel manganese double hydroxide nanoparticles synthesized for ethylene glycol electrooxidation and hydrogen energy reaction.•Electrochemical impedance spectroscopy studies for ethylene glycol electrooxidation.•Electrochemical oxidation [1–74] over nickel-based catalysts.</description><subject>Binary hydroxides</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Electrocatalyst</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Ethylene glycol</subject><subject>Ethylene glycol electro-oxidation</subject><subject>Fuel cell</subject><subject>Graphene</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese</subject><subject>Ni-Mn</subject><subject>Nickel</subject><subject>Raman spectroscopy</subject><subject>Silver chloride</subject><subject>Spectrum analysis</subject><subject>Voltammetry</subject><issn>0379-6779</issn><issn>1879-3290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAURVHVSJ2m_YUKqWtPABtsdq2iNqkUpZt2jTB-HjNlYAo4jX8nX1pcN-useKBz7xP3IvSBkj0lVFwd92nxeTpB3jPC6J5SIbl8hXa0a2VVM0leox2pyyzaVr5Bb1M6EkKoZHyHnu6t-QWuOml_0B4S4CHMvQM8LUMMj3YAfLKPMOA_Nk84wjCbcjlEfZ7AA94IcGByDEZn7ZaU8RgihnG0xoLPGPK0uBU-uMUE90yvUp1t8Fj7YVt3AI_hIbj533MEbdbhHboYtUvw_v95iX5-_fLj-ra6-37z7frzXWXqhuSqq00NhvNOt5r3I2_E0Mm-pa3gNZeCdbwlgnFO-1H3kho29FRLYpiWDdM11Jfo4-Z7juH3DCmrY5ijLysVE6wRxYA3hRIbZWJIKcKoztGedFwUJWrtQx3Vcx9q7UNtfRThp00I5Q8PFqJKaz4lThtLIGoI9iWLv4NtnMI</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Hefnawy, Mahmoud A.</creator><creator>Fadlallah, Sahar A.</creator><creator>El-Sherif, Rabab M.</creator><creator>Medany, Shymaa S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202112</creationdate><title>Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction</title><author>Hefnawy, Mahmoud A. ; Fadlallah, Sahar A. ; El-Sherif, Rabab M. ; Medany, Shymaa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-83c3ec558a7a5bf546d89b7176535962857062551bfab91c2db1a90c2a942a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary hydroxides</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Electrocatalyst</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Ethylene glycol</topic><topic>Ethylene glycol electro-oxidation</topic><topic>Fuel cell</topic><topic>Graphene</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese</topic><topic>Ni-Mn</topic><topic>Nickel</topic><topic>Raman spectroscopy</topic><topic>Silver chloride</topic><topic>Spectrum analysis</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hefnawy, Mahmoud A.</creatorcontrib><creatorcontrib>Fadlallah, Sahar A.</creatorcontrib><creatorcontrib>El-Sherif, Rabab M.</creatorcontrib><creatorcontrib>Medany, Shymaa S.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Synthetic metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hefnawy, Mahmoud A.</au><au>Fadlallah, Sahar A.</au><au>El-Sherif, Rabab M.</au><au>Medany, Shymaa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction</atitle><jtitle>Synthetic metals</jtitle><date>2021-12</date><risdate>2021</risdate><volume>282</volume><spage>116959</spage><pages>116959-</pages><artnum>116959</artnum><issn>0379-6779</issn><eissn>1879-3290</eissn><abstract>Nickel-Manganese (Ni-Mn) double hydroxide catalysts were synthesized on reduced graphene oxide (RGO) and examined for both ethylene glycol (EG) electrooxidation and hydrogen evolution reaction (HER). Different modified electrodes were fabricated and compared with pristine β-Ni(OH)2. The surfaces of the prepared modified electrodes were characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Raman spectroscopy, and differential scanning calorimetry (DSC). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) were used to examine the electrochemical behavior of the prepared electrodes. Furthermore, the Ni-Mn double hydroxide loaded RGO showed a remarked performance as a dual catalyst towards cathodic and anodic reactions, i.e., ethylene glycol electrooxidation and Hydrogen evolution reaction (HER). Additionally, the activity of RGO-NiMn double hydroxide towards ethylene glycol electrooxidation was achieved to 38 mA cm−2 in 1.0 M KOH at a potential of 500 mV (vs. Ag/AgCl). At the same time, the recorded potential of the electrode for hydrogen evolution was − 600 mV (vs. Ag/AgCl) at the current density of 10 mA cm−2. •Nickel manganese double hydroxide nanoparticles synthesized for ethylene glycol electrooxidation and hydrogen energy reaction.•Electrochemical impedance spectroscopy studies for ethylene glycol electrooxidation.•Electrochemical oxidation [1–74] over nickel-based catalysts.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.synthmet.2021.116959</doi></addata></record>
fulltext fulltext
identifier ISSN: 0379-6779
ispartof Synthetic metals, 2021-12, Vol.282, p.116959, Article 116959
issn 0379-6779
1879-3290
language eng
recordid cdi_proquest_journals_2624685754
source Elsevier ScienceDirect Journals
subjects Binary hydroxides
Catalysts
Chemical synthesis
Electrocatalyst
Electrocatalysts
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrodes
Ethylene glycol
Ethylene glycol electro-oxidation
Fuel cell
Graphene
Hydrogen
Hydrogen evolution reaction
Hydrogen evolution reactions
Manganese
Ni-Mn
Nickel
Raman spectroscopy
Silver chloride
Spectrum analysis
Voltammetry
title Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel-manganese%20double%20hydroxide%20mixed%20with%20reduced%20graphene%20oxide%20electrocatalyst%20for%20efficient%20ethylene%20glycol%20electrooxidation%20and%20hydrogen%20evolution%20reaction&rft.jtitle=Synthetic%20metals&rft.au=Hefnawy,%20Mahmoud%20A.&rft.date=2021-12&rft.volume=282&rft.spage=116959&rft.pages=116959-&rft.artnum=116959&rft.issn=0379-6779&rft.eissn=1879-3290&rft_id=info:doi/10.1016/j.synthmet.2021.116959&rft_dat=%3Cproquest_cross%3E2624685754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624685754&rft_id=info:pmid/&rft_els_id=S0379677921002654&rfr_iscdi=true