Water‐assisted sintering of silica: Densification mechanisms and their possible implications in biomineralization

Taking silica as an exemplary material system, we studied water‐assisted densification behaviors of different crystallinities (quartz, glass, and vitreous silica). To avoid the complexity in data interpretation, we adopted a simple procedure similar to those used for pressing salt pellets for IR: co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2022-04, Vol.105 (4), p.2945-2954
Hauptverfasser: Li, Hongkun, Zhong, Jing, Shen, Junda, Liu, Jiahua, Li, Bo, Tang, Xinxue, Pan, Jie, Xu, Zhengtao, Lu, Jian, Li, Yang Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2954
container_issue 4
container_start_page 2945
container_title Journal of the American Ceramic Society
container_volume 105
creator Li, Hongkun
Zhong, Jing
Shen, Junda
Liu, Jiahua
Li, Bo
Tang, Xinxue
Pan, Jie
Xu, Zhengtao
Lu, Jian
Li, Yang Yang
description Taking silica as an exemplary material system, we studied water‐assisted densification behaviors of different crystallinities (quartz, glass, and vitreous silica). To avoid the complexity in data interpretation, we adopted a simple procedure similar to those used for pressing salt pellets for IR: compressing silica powders in a mold with pure water under ambient conditions. It is discovered that crystalline silica is compacted through liquid lubrication, while amorphous silica's densification behaviors contradict the widely regarded dissolution‐reprecipitation mechanism. Another mechanism is thus proposed: stress‐driven water incorporation into the solid structures produces hydrated silica of considerable plasticity for deformation and fusion. Inspired by this water‐assisted mechanism, a more effective sintering method is developed via repetitive stressing/destressing treatments at room temperature, enabling dramatically boosted densities (e.g., over 90% with transparent appearance for silica glass) and enhanced mechanical performance. This generic strategy may apply to a wide range of materials. Furthermore, the hydration‐enabled deformation/sintering mechanism proposed in this work offers fresh insights into the biomineralization puzzles, particularly those on how life accomplishes some of the most challenging tasks faced by humans in modern ceramic technology, for example, to fuse, mend or reshape the rigid brittle ceramic objects in aqueous environments under ambient conditions. This purely inorganic biomineralization mechanism may be particularly important for life at its early stage of evolution on earth. Crystalline and amorphous silica powder pressed with pure water at room temperature Different densification mechanisms recognized for crystalline and amorphous silica Amorphous silica gains plasticity through stress‐driven interstitial hydration and restores strength upon relief Cyclic wet‐stressing/destressing greatly enhances the sintering of amorphous silica Insights on how life fuses mends or reshapes ceramics in water at low temperature
doi_str_mv 10.1111/jace.18268
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624611051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624611051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3018-1ee706b4f11b54bb1fb708bb505dd83789e3edbe32b51f02c517f4ef9057f363</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqWw4QSW2CGleJI4cdhVpbxUiU0llpGdjKmrxAl2ECorjsAZOQnuY81s5qFv_tH8hFwCm0CIm7WscAIizsQRGQHnEMUFZMdkxBiLo1zE7JSceb8OLRQiHRH_Kgd0v98_0nvjB6ypNzZMjH2jnQ5NYyp5S-_QeqNDOZjO0harlbTGt55KW9NhhcbRvgsKqkFq2r45kJ4aS5XpWmPRycZ87abn5ETLxuPFIY_J8n6-nD1Gi5eHp9l0EVUJAxEBYs4ylWoAxVOlQKucCaU443UtklwUmGCtMIkVB83iikOuU9QF47lOsmRMrvayveveP9AP5br7cDZcLOMsTjMAxiFQ13uqcuEBh7rsnWml25TAyq2n5dbTcudpgGEPf5oGN_-Q5fN0Nt_v_AEnAXzD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624611051</pqid></control><display><type>article</type><title>Water‐assisted sintering of silica: Densification mechanisms and their possible implications in biomineralization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Hongkun ; Zhong, Jing ; Shen, Junda ; Liu, Jiahua ; Li, Bo ; Tang, Xinxue ; Pan, Jie ; Xu, Zhengtao ; Lu, Jian ; Li, Yang Yang</creator><creatorcontrib>Li, Hongkun ; Zhong, Jing ; Shen, Junda ; Liu, Jiahua ; Li, Bo ; Tang, Xinxue ; Pan, Jie ; Xu, Zhengtao ; Lu, Jian ; Li, Yang Yang</creatorcontrib><description>Taking silica as an exemplary material system, we studied water‐assisted densification behaviors of different crystallinities (quartz, glass, and vitreous silica). To avoid the complexity in data interpretation, we adopted a simple procedure similar to those used for pressing salt pellets for IR: compressing silica powders in a mold with pure water under ambient conditions. It is discovered that crystalline silica is compacted through liquid lubrication, while amorphous silica's densification behaviors contradict the widely regarded dissolution‐reprecipitation mechanism. Another mechanism is thus proposed: stress‐driven water incorporation into the solid structures produces hydrated silica of considerable plasticity for deformation and fusion. Inspired by this water‐assisted mechanism, a more effective sintering method is developed via repetitive stressing/destressing treatments at room temperature, enabling dramatically boosted densities (e.g., over 90% with transparent appearance for silica glass) and enhanced mechanical performance. This generic strategy may apply to a wide range of materials. Furthermore, the hydration‐enabled deformation/sintering mechanism proposed in this work offers fresh insights into the biomineralization puzzles, particularly those on how life accomplishes some of the most challenging tasks faced by humans in modern ceramic technology, for example, to fuse, mend or reshape the rigid brittle ceramic objects in aqueous environments under ambient conditions. This purely inorganic biomineralization mechanism may be particularly important for life at its early stage of evolution on earth. Crystalline and amorphous silica powder pressed with pure water at room temperature Different densification mechanisms recognized for crystalline and amorphous silica Amorphous silica gains plasticity through stress‐driven interstitial hydration and restores strength upon relief Cyclic wet‐stressing/destressing greatly enhances the sintering of amorphous silica Insights on how life fuses mends or reshapes ceramics in water at low temperature</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18268</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>biominerals ; densification ; hydration ; plasticity ; silica ; sintering</subject><ispartof>Journal of the American Ceramic Society, 2022-04, Vol.105 (4), p.2945-2954</ispartof><rights>2021 The American Ceramic Society</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3018-1ee706b4f11b54bb1fb708bb505dd83789e3edbe32b51f02c517f4ef9057f363</citedby><cites>FETCH-LOGICAL-c3018-1ee706b4f11b54bb1fb708bb505dd83789e3edbe32b51f02c517f4ef9057f363</cites><orcidid>0000-0002-2325-5191 ; 0000-0003-4153-9558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Li, Hongkun</creatorcontrib><creatorcontrib>Zhong, Jing</creatorcontrib><creatorcontrib>Shen, Junda</creatorcontrib><creatorcontrib>Liu, Jiahua</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Tang, Xinxue</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Xu, Zhengtao</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Li, Yang Yang</creatorcontrib><title>Water‐assisted sintering of silica: Densification mechanisms and their possible implications in biomineralization</title><title>Journal of the American Ceramic Society</title><description>Taking silica as an exemplary material system, we studied water‐assisted densification behaviors of different crystallinities (quartz, glass, and vitreous silica). To avoid the complexity in data interpretation, we adopted a simple procedure similar to those used for pressing salt pellets for IR: compressing silica powders in a mold with pure water under ambient conditions. It is discovered that crystalline silica is compacted through liquid lubrication, while amorphous silica's densification behaviors contradict the widely regarded dissolution‐reprecipitation mechanism. Another mechanism is thus proposed: stress‐driven water incorporation into the solid structures produces hydrated silica of considerable plasticity for deformation and fusion. Inspired by this water‐assisted mechanism, a more effective sintering method is developed via repetitive stressing/destressing treatments at room temperature, enabling dramatically boosted densities (e.g., over 90% with transparent appearance for silica glass) and enhanced mechanical performance. This generic strategy may apply to a wide range of materials. Furthermore, the hydration‐enabled deformation/sintering mechanism proposed in this work offers fresh insights into the biomineralization puzzles, particularly those on how life accomplishes some of the most challenging tasks faced by humans in modern ceramic technology, for example, to fuse, mend or reshape the rigid brittle ceramic objects in aqueous environments under ambient conditions. This purely inorganic biomineralization mechanism may be particularly important for life at its early stage of evolution on earth. Crystalline and amorphous silica powder pressed with pure water at room temperature Different densification mechanisms recognized for crystalline and amorphous silica Amorphous silica gains plasticity through stress‐driven interstitial hydration and restores strength upon relief Cyclic wet‐stressing/destressing greatly enhances the sintering of amorphous silica Insights on how life fuses mends or reshapes ceramics in water at low temperature</description><subject>biominerals</subject><subject>densification</subject><subject>hydration</subject><subject>plasticity</subject><subject>silica</subject><subject>sintering</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqWw4QSW2CGleJI4cdhVpbxUiU0llpGdjKmrxAl2ECorjsAZOQnuY81s5qFv_tH8hFwCm0CIm7WscAIizsQRGQHnEMUFZMdkxBiLo1zE7JSceb8OLRQiHRH_Kgd0v98_0nvjB6ypNzZMjH2jnQ5NYyp5S-_QeqNDOZjO0harlbTGt55KW9NhhcbRvgsKqkFq2r45kJ4aS5XpWmPRycZ87abn5ETLxuPFIY_J8n6-nD1Gi5eHp9l0EVUJAxEBYs4ylWoAxVOlQKucCaU443UtklwUmGCtMIkVB83iikOuU9QF47lOsmRMrvayveveP9AP5br7cDZcLOMsTjMAxiFQ13uqcuEBh7rsnWml25TAyq2n5dbTcudpgGEPf5oGN_-Q5fN0Nt_v_AEnAXzD</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Li, Hongkun</creator><creator>Zhong, Jing</creator><creator>Shen, Junda</creator><creator>Liu, Jiahua</creator><creator>Li, Bo</creator><creator>Tang, Xinxue</creator><creator>Pan, Jie</creator><creator>Xu, Zhengtao</creator><creator>Lu, Jian</creator><creator>Li, Yang Yang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2325-5191</orcidid><orcidid>https://orcid.org/0000-0003-4153-9558</orcidid></search><sort><creationdate>202204</creationdate><title>Water‐assisted sintering of silica: Densification mechanisms and their possible implications in biomineralization</title><author>Li, Hongkun ; Zhong, Jing ; Shen, Junda ; Liu, Jiahua ; Li, Bo ; Tang, Xinxue ; Pan, Jie ; Xu, Zhengtao ; Lu, Jian ; Li, Yang Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3018-1ee706b4f11b54bb1fb708bb505dd83789e3edbe32b51f02c517f4ef9057f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biominerals</topic><topic>densification</topic><topic>hydration</topic><topic>plasticity</topic><topic>silica</topic><topic>sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongkun</creatorcontrib><creatorcontrib>Zhong, Jing</creatorcontrib><creatorcontrib>Shen, Junda</creatorcontrib><creatorcontrib>Liu, Jiahua</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Tang, Xinxue</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Xu, Zhengtao</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Li, Yang Yang</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongkun</au><au>Zhong, Jing</au><au>Shen, Junda</au><au>Liu, Jiahua</au><au>Li, Bo</au><au>Tang, Xinxue</au><au>Pan, Jie</au><au>Xu, Zhengtao</au><au>Lu, Jian</au><au>Li, Yang Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water‐assisted sintering of silica: Densification mechanisms and their possible implications in biomineralization</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-04</date><risdate>2022</risdate><volume>105</volume><issue>4</issue><spage>2945</spage><epage>2954</epage><pages>2945-2954</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Taking silica as an exemplary material system, we studied water‐assisted densification behaviors of different crystallinities (quartz, glass, and vitreous silica). To avoid the complexity in data interpretation, we adopted a simple procedure similar to those used for pressing salt pellets for IR: compressing silica powders in a mold with pure water under ambient conditions. It is discovered that crystalline silica is compacted through liquid lubrication, while amorphous silica's densification behaviors contradict the widely regarded dissolution‐reprecipitation mechanism. Another mechanism is thus proposed: stress‐driven water incorporation into the solid structures produces hydrated silica of considerable plasticity for deformation and fusion. Inspired by this water‐assisted mechanism, a more effective sintering method is developed via repetitive stressing/destressing treatments at room temperature, enabling dramatically boosted densities (e.g., over 90% with transparent appearance for silica glass) and enhanced mechanical performance. This generic strategy may apply to a wide range of materials. Furthermore, the hydration‐enabled deformation/sintering mechanism proposed in this work offers fresh insights into the biomineralization puzzles, particularly those on how life accomplishes some of the most challenging tasks faced by humans in modern ceramic technology, for example, to fuse, mend or reshape the rigid brittle ceramic objects in aqueous environments under ambient conditions. This purely inorganic biomineralization mechanism may be particularly important for life at its early stage of evolution on earth. Crystalline and amorphous silica powder pressed with pure water at room temperature Different densification mechanisms recognized for crystalline and amorphous silica Amorphous silica gains plasticity through stress‐driven interstitial hydration and restores strength upon relief Cyclic wet‐stressing/destressing greatly enhances the sintering of amorphous silica Insights on how life fuses mends or reshapes ceramics in water at low temperature</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18268</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2325-5191</orcidid><orcidid>https://orcid.org/0000-0003-4153-9558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-04, Vol.105 (4), p.2945-2954
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2624611051
source Wiley Online Library Journals Frontfile Complete
subjects biominerals
densification
hydration
plasticity
silica
sintering
title Water‐assisted sintering of silica: Densification mechanisms and their possible implications in biomineralization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%90assisted%20sintering%20of%20silica:%20Densification%20mechanisms%20and%20their%20possible%20implications%20in%20biomineralization&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Li,%20Hongkun&rft.date=2022-04&rft.volume=105&rft.issue=4&rft.spage=2945&rft.epage=2954&rft.pages=2945-2954&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18268&rft_dat=%3Cproquest_cross%3E2624611051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624611051&rft_id=info:pmid/&rfr_iscdi=true