Phase formation and performance of solid state reactive sintered Ce0.8Gd0.2O2−δ–FeCo2O4 composites
Reactive sintering of dual phase composites for use as oxygen transport membranes is a promising method enabling lower sintering temperatures as well as low-cost raw materials. Ce0.8Gd0.2O2−δ–FeCo2O4 composites with different nominal weight ratios from 60 : 40 to 90 : 10 are processed by reactive si...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-02, Vol.10 (5), p.2412-2420 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2420 |
---|---|
container_issue | 5 |
container_start_page | 2412 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Fischer, Liudmila Neuhaus, Kerstin Schmidt, Christina Ke Ran Behr, Patrick Baumann, Stefan Mayer, Joachim Meulenberg, Wilhelm A |
description | Reactive sintering of dual phase composites for use as oxygen transport membranes is a promising method enabling lower sintering temperatures as well as low-cost raw materials. Ce0.8Gd0.2O2−δ–FeCo2O4 composites with different nominal weight ratios from 60 : 40 to 90 : 10 are processed by reactive sintering of commercial Ce0.8Gd0.2O2−δ, Fe2O3, and Co3O4 powders. The phases formed in situ during sintering are investigated qualitatively and quantitatively by means of XRD and Rietveld refinement as well as transmission electron microscopy. Besides gadolinia-doped ceria, two Fe/Co-spinel phases are in equilibrium in agreement with the phase diagram. Moreover, a donor-doped GdFeO3-based perovskite (Gd,Ce)(Fe,Co)O3 showing electronic conductivity is formed. Due to these intense phase reactions, the composition of each individual phase is assessed for all composites and their functional properties are discussed. The oxygen permeation performances of the composites are measured including their dependence on temperature and the potential limiting steps are discussed. The results reveal that the phase reactions support the formation of the desired mixed ionic electronic conductivity achieving percolation at low nominal spinel contents. The specific microstructure plays an extremely important role in the membrane performance and, thus, special attention should be paid to this in future research about dual phase membranes. |
doi_str_mv | 10.1039/d1ta05695f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2624602491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624602491</sourcerecordid><originalsourceid>FETCH-LOGICAL-p149t-e5f914aa34462a4461a6cb7358d0d4ede0218241905ff966b05d404de2612b923</originalsourceid><addsrcrecordid>eNo9jbFOwzAYhC0EElXpwhNYYk75_cd24xFFtCBVCgPMlRv_hlRtHGKXmZEZXoXn4CH6JESAuOHu0w13jJ0LmArIzaUTyYLSRvkjNkJQkM2k0cf_XBSnbBLjBgYVANqYEXu8e7KRuA_9zqYmtNy2jnfU_xRtTTx4HsO2cTwmm4j3ZOvUvBCPTZuoJ8dLgmmxcDDFCg9v71-fh9ePOZUBK8nrsOtCbBLFM3bi7TbS5C_H7GF-fV_eZMtqcVteLbNOSJMyUt4IaW0upUY7mLC6Xs9yVThwkhwBigKlMKC8N1qvQTkJ0hFqgWuD-Zhd_O52fXjeU0yrTdj37XC5Qo1SA0oj8m8N71nn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624602491</pqid></control><display><type>article</type><title>Phase formation and performance of solid state reactive sintered Ce0.8Gd0.2O2−δ–FeCo2O4 composites</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Fischer, Liudmila ; Neuhaus, Kerstin ; Schmidt, Christina ; Ke Ran ; Behr, Patrick ; Baumann, Stefan ; Mayer, Joachim ; Meulenberg, Wilhelm A</creator><creatorcontrib>Fischer, Liudmila ; Neuhaus, Kerstin ; Schmidt, Christina ; Ke Ran ; Behr, Patrick ; Baumann, Stefan ; Mayer, Joachim ; Meulenberg, Wilhelm A</creatorcontrib><description>Reactive sintering of dual phase composites for use as oxygen transport membranes is a promising method enabling lower sintering temperatures as well as low-cost raw materials. Ce0.8Gd0.2O2−δ–FeCo2O4 composites with different nominal weight ratios from 60 : 40 to 90 : 10 are processed by reactive sintering of commercial Ce0.8Gd0.2O2−δ, Fe2O3, and Co3O4 powders. The phases formed in situ during sintering are investigated qualitatively and quantitatively by means of XRD and Rietveld refinement as well as transmission electron microscopy. Besides gadolinia-doped ceria, two Fe/Co-spinel phases are in equilibrium in agreement with the phase diagram. Moreover, a donor-doped GdFeO3-based perovskite (Gd,Ce)(Fe,Co)O3 showing electronic conductivity is formed. Due to these intense phase reactions, the composition of each individual phase is assessed for all composites and their functional properties are discussed. The oxygen permeation performances of the composites are measured including their dependence on temperature and the potential limiting steps are discussed. The results reveal that the phase reactions support the formation of the desired mixed ionic electronic conductivity achieving percolation at low nominal spinel contents. The specific microstructure plays an extremely important role in the membrane performance and, thus, special attention should be paid to this in future research about dual phase membranes.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta05695f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated sintering ; Cerium gadolinium oxides ; Cerium oxides ; Cobalt oxides ; Composite materials ; Conductivity ; Ferric oxide ; Gadolinium ; Gadolinium oxides ; Iron ; Membranes ; Oxygen ; Percolation ; Perovskites ; Phase diagrams ; Raw materials ; Sintering ; Sintering (powder metallurgy) ; Spinel ; Temperature dependence ; Transmission electron microscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-02, Vol.10 (5), p.2412-2420</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fischer, Liudmila</creatorcontrib><creatorcontrib>Neuhaus, Kerstin</creatorcontrib><creatorcontrib>Schmidt, Christina</creatorcontrib><creatorcontrib>Ke Ran</creatorcontrib><creatorcontrib>Behr, Patrick</creatorcontrib><creatorcontrib>Baumann, Stefan</creatorcontrib><creatorcontrib>Mayer, Joachim</creatorcontrib><creatorcontrib>Meulenberg, Wilhelm A</creatorcontrib><title>Phase formation and performance of solid state reactive sintered Ce0.8Gd0.2O2−δ–FeCo2O4 composites</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Reactive sintering of dual phase composites for use as oxygen transport membranes is a promising method enabling lower sintering temperatures as well as low-cost raw materials. Ce0.8Gd0.2O2−δ–FeCo2O4 composites with different nominal weight ratios from 60 : 40 to 90 : 10 are processed by reactive sintering of commercial Ce0.8Gd0.2O2−δ, Fe2O3, and Co3O4 powders. The phases formed in situ during sintering are investigated qualitatively and quantitatively by means of XRD and Rietveld refinement as well as transmission electron microscopy. Besides gadolinia-doped ceria, two Fe/Co-spinel phases are in equilibrium in agreement with the phase diagram. Moreover, a donor-doped GdFeO3-based perovskite (Gd,Ce)(Fe,Co)O3 showing electronic conductivity is formed. Due to these intense phase reactions, the composition of each individual phase is assessed for all composites and their functional properties are discussed. The oxygen permeation performances of the composites are measured including their dependence on temperature and the potential limiting steps are discussed. The results reveal that the phase reactions support the formation of the desired mixed ionic electronic conductivity achieving percolation at low nominal spinel contents. The specific microstructure plays an extremely important role in the membrane performance and, thus, special attention should be paid to this in future research about dual phase membranes.</description><subject>Activated sintering</subject><subject>Cerium gadolinium oxides</subject><subject>Cerium oxides</subject><subject>Cobalt oxides</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Ferric oxide</subject><subject>Gadolinium</subject><subject>Gadolinium oxides</subject><subject>Iron</subject><subject>Membranes</subject><subject>Oxygen</subject><subject>Percolation</subject><subject>Perovskites</subject><subject>Phase diagrams</subject><subject>Raw materials</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spinel</subject><subject>Temperature dependence</subject><subject>Transmission electron microscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jbFOwzAYhC0EElXpwhNYYk75_cd24xFFtCBVCgPMlRv_hlRtHGKXmZEZXoXn4CH6JESAuOHu0w13jJ0LmArIzaUTyYLSRvkjNkJQkM2k0cf_XBSnbBLjBgYVANqYEXu8e7KRuA_9zqYmtNy2jnfU_xRtTTx4HsO2cTwmm4j3ZOvUvBCPTZuoJ8dLgmmxcDDFCg9v71-fh9ePOZUBK8nrsOtCbBLFM3bi7TbS5C_H7GF-fV_eZMtqcVteLbNOSJMyUt4IaW0upUY7mLC6Xs9yVThwkhwBigKlMKC8N1qvQTkJ0hFqgWuD-Zhd_O52fXjeU0yrTdj37XC5Qo1SA0oj8m8N71nn</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Fischer, Liudmila</creator><creator>Neuhaus, Kerstin</creator><creator>Schmidt, Christina</creator><creator>Ke Ran</creator><creator>Behr, Patrick</creator><creator>Baumann, Stefan</creator><creator>Mayer, Joachim</creator><creator>Meulenberg, Wilhelm A</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220201</creationdate><title>Phase formation and performance of solid state reactive sintered Ce0.8Gd0.2O2−δ–FeCo2O4 composites</title><author>Fischer, Liudmila ; Neuhaus, Kerstin ; Schmidt, Christina ; Ke Ran ; Behr, Patrick ; Baumann, Stefan ; Mayer, Joachim ; Meulenberg, Wilhelm A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p149t-e5f914aa34462a4461a6cb7358d0d4ede0218241905ff966b05d404de2612b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated sintering</topic><topic>Cerium gadolinium oxides</topic><topic>Cerium oxides</topic><topic>Cobalt oxides</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Ferric oxide</topic><topic>Gadolinium</topic><topic>Gadolinium oxides</topic><topic>Iron</topic><topic>Membranes</topic><topic>Oxygen</topic><topic>Percolation</topic><topic>Perovskites</topic><topic>Phase diagrams</topic><topic>Raw materials</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spinel</topic><topic>Temperature dependence</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Liudmila</creatorcontrib><creatorcontrib>Neuhaus, Kerstin</creatorcontrib><creatorcontrib>Schmidt, Christina</creatorcontrib><creatorcontrib>Ke Ran</creatorcontrib><creatorcontrib>Behr, Patrick</creatorcontrib><creatorcontrib>Baumann, Stefan</creatorcontrib><creatorcontrib>Mayer, Joachim</creatorcontrib><creatorcontrib>Meulenberg, Wilhelm A</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Liudmila</au><au>Neuhaus, Kerstin</au><au>Schmidt, Christina</au><au>Ke Ran</au><au>Behr, Patrick</au><au>Baumann, Stefan</au><au>Mayer, Joachim</au><au>Meulenberg, Wilhelm A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase formation and performance of solid state reactive sintered Ce0.8Gd0.2O2−δ–FeCo2O4 composites</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>10</volume><issue>5</issue><spage>2412</spage><epage>2420</epage><pages>2412-2420</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Reactive sintering of dual phase composites for use as oxygen transport membranes is a promising method enabling lower sintering temperatures as well as low-cost raw materials. Ce0.8Gd0.2O2−δ–FeCo2O4 composites with different nominal weight ratios from 60 : 40 to 90 : 10 are processed by reactive sintering of commercial Ce0.8Gd0.2O2−δ, Fe2O3, and Co3O4 powders. The phases formed in situ during sintering are investigated qualitatively and quantitatively by means of XRD and Rietveld refinement as well as transmission electron microscopy. Besides gadolinia-doped ceria, two Fe/Co-spinel phases are in equilibrium in agreement with the phase diagram. Moreover, a donor-doped GdFeO3-based perovskite (Gd,Ce)(Fe,Co)O3 showing electronic conductivity is formed. Due to these intense phase reactions, the composition of each individual phase is assessed for all composites and their functional properties are discussed. The oxygen permeation performances of the composites are measured including their dependence on temperature and the potential limiting steps are discussed. The results reveal that the phase reactions support the formation of the desired mixed ionic electronic conductivity achieving percolation at low nominal spinel contents. The specific microstructure plays an extremely important role in the membrane performance and, thus, special attention should be paid to this in future research about dual phase membranes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta05695f</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-02, Vol.10 (5), p.2412-2420 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2624602491 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Activated sintering Cerium gadolinium oxides Cerium oxides Cobalt oxides Composite materials Conductivity Ferric oxide Gadolinium Gadolinium oxides Iron Membranes Oxygen Percolation Perovskites Phase diagrams Raw materials Sintering Sintering (powder metallurgy) Spinel Temperature dependence Transmission electron microscopy |
title | Phase formation and performance of solid state reactive sintered Ce0.8Gd0.2O2−δ–FeCo2O4 composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20formation%20and%20performance%20of%20solid%20state%20reactive%20sintered%20Ce0.8Gd0.2O2%E2%88%92%CE%B4%E2%80%93FeCo2O4%20composites&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Fischer,%20Liudmila&rft.date=2022-02-01&rft.volume=10&rft.issue=5&rft.spage=2412&rft.epage=2420&rft.pages=2412-2420&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta05695f&rft_dat=%3Cproquest%3E2624602491%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624602491&rft_id=info:pmid/&rfr_iscdi=true |