Mobile Robot Manipulation using Pure Object Detection

This paper addresses the problem of mobile robot manipulation using object detection. Our approach uses detection and control as complimentary functions that learn from real-world interactions. We develop an end-to-end manipulation method based solely on detection and introduce Task-focused Few-shot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
1. Verfasser: Griffin, Brent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Griffin, Brent
description This paper addresses the problem of mobile robot manipulation using object detection. Our approach uses detection and control as complimentary functions that learn from real-world interactions. We develop an end-to-end manipulation method based solely on detection and introduce Task-focused Few-shot Object Detection (TFOD) to learn new objects and settings. Our robot collects its own training data and automatically determines when to retrain detection to improve performance across various subtasks (e.g., grasping). Notably, detection training is low-cost, and our robot learns to manipulate new objects using as few as four clicks of annotation. In physical experiments, our robot learns visual control from a single click of annotation and a novel update formulation, manipulates new objects in clutter and other mobile settings, and achieves state-of-the-art results on an existing visual servo control and depth estimation benchmark. Finally, we develop a TFOD Benchmark to support future object detection research for robotics: https://github.com/griffbr/tfod.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2624490654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624490654</sourcerecordid><originalsourceid>FETCH-proquest_journals_26244906543</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScC_Hkos5ecCmKuJdEjpIQkprL-9vBB3D6h--fkQY433Q7AbAgbc6OMQZqC1Lyhsg-GuuR3qOJhfY62LF6XWwMtGYb3vRWE9Krcfgs9IhlymQrMn9pn7H9dUnW59PjcOnGFD8VcxlcrClMNIACIfZMScH_u75_bzTV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624490654</pqid></control><display><type>article</type><title>Mobile Robot Manipulation using Pure Object Detection</title><source>Free E- Journals</source><creator>Griffin, Brent</creator><creatorcontrib>Griffin, Brent</creatorcontrib><description>This paper addresses the problem of mobile robot manipulation using object detection. Our approach uses detection and control as complimentary functions that learn from real-world interactions. We develop an end-to-end manipulation method based solely on detection and introduce Task-focused Few-shot Object Detection (TFOD) to learn new objects and settings. Our robot collects its own training data and automatically determines when to retrain detection to improve performance across various subtasks (e.g., grasping). Notably, detection training is low-cost, and our robot learns to manipulate new objects using as few as four clicks of annotation. In physical experiments, our robot learns visual control from a single click of annotation and a novel update formulation, manipulates new objects in clutter and other mobile settings, and achieves state-of-the-art results on an existing visual servo control and depth estimation benchmark. Finally, we develop a TFOD Benchmark to support future object detection research for robotics: https://github.com/griffbr/tfod.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Benchmarks ; Clutter ; Object recognition ; Robots ; Servocontrol</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Griffin, Brent</creatorcontrib><title>Mobile Robot Manipulation using Pure Object Detection</title><title>arXiv.org</title><description>This paper addresses the problem of mobile robot manipulation using object detection. Our approach uses detection and control as complimentary functions that learn from real-world interactions. We develop an end-to-end manipulation method based solely on detection and introduce Task-focused Few-shot Object Detection (TFOD) to learn new objects and settings. Our robot collects its own training data and automatically determines when to retrain detection to improve performance across various subtasks (e.g., grasping). Notably, detection training is low-cost, and our robot learns to manipulate new objects using as few as four clicks of annotation. In physical experiments, our robot learns visual control from a single click of annotation and a novel update formulation, manipulates new objects in clutter and other mobile settings, and achieves state-of-the-art results on an existing visual servo control and depth estimation benchmark. Finally, we develop a TFOD Benchmark to support future object detection research for robotics: https://github.com/griffbr/tfod.</description><subject>Annotations</subject><subject>Benchmarks</subject><subject>Clutter</subject><subject>Object recognition</subject><subject>Robots</subject><subject>Servocontrol</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScC_Hkos5ecCmKuJdEjpIQkprL-9vBB3D6h--fkQY433Q7AbAgbc6OMQZqC1Lyhsg-GuuR3qOJhfY62LF6XWwMtGYb3vRWE9Krcfgs9IhlymQrMn9pn7H9dUnW59PjcOnGFD8VcxlcrClMNIACIfZMScH_u75_bzTV</recordid><startdate>20221017</startdate><enddate>20221017</enddate><creator>Griffin, Brent</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221017</creationdate><title>Mobile Robot Manipulation using Pure Object Detection</title><author>Griffin, Brent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26244906543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Benchmarks</topic><topic>Clutter</topic><topic>Object recognition</topic><topic>Robots</topic><topic>Servocontrol</topic><toplevel>online_resources</toplevel><creatorcontrib>Griffin, Brent</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffin, Brent</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mobile Robot Manipulation using Pure Object Detection</atitle><jtitle>arXiv.org</jtitle><date>2022-10-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper addresses the problem of mobile robot manipulation using object detection. Our approach uses detection and control as complimentary functions that learn from real-world interactions. We develop an end-to-end manipulation method based solely on detection and introduce Task-focused Few-shot Object Detection (TFOD) to learn new objects and settings. Our robot collects its own training data and automatically determines when to retrain detection to improve performance across various subtasks (e.g., grasping). Notably, detection training is low-cost, and our robot learns to manipulate new objects using as few as four clicks of annotation. In physical experiments, our robot learns visual control from a single click of annotation and a novel update formulation, manipulates new objects in clutter and other mobile settings, and achieves state-of-the-art results on an existing visual servo control and depth estimation benchmark. Finally, we develop a TFOD Benchmark to support future object detection research for robotics: https://github.com/griffbr/tfod.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2624490654
source Free E- Journals
subjects Annotations
Benchmarks
Clutter
Object recognition
Robots
Servocontrol
title Mobile Robot Manipulation using Pure Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mobile%20Robot%20Manipulation%20using%20Pure%20Object%20Detection&rft.jtitle=arXiv.org&rft.au=Griffin,%20Brent&rft.date=2022-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2624490654%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624490654&rft_id=info:pmid/&rfr_iscdi=true