Automatic Segmentation of Left Ventricle in Cardiac Magnetic Resonance Images
Segmentation of the left ventricle in cardiac magnetic resonance imaging MRI scans enables cardiologists to calculate the volume of the left ventricle and subsequently its ejection fraction. The ejection fraction is a measurement that expresses the percentage of blood leaving the heart with each con...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chhabra, Garvit Gagan, J H Kumar, J R Harish |
description | Segmentation of the left ventricle in cardiac magnetic resonance imaging MRI scans enables cardiologists to calculate the volume of the left ventricle and subsequently its ejection fraction. The ejection fraction is a measurement that expresses the percentage of blood leaving the heart with each contraction. Cardiologists often use ejection fraction to determine one's cardiac function. We propose multiscale template matching technique for detection and an elliptical active disc for automated segmentation of the left ventricle in MR images. The elliptical active disc optimizes the local energy function with respect to its five free parameters which define the disc. Gradient descent is used to minimize the energy function along with Green's theorem to optimize the computation expenses. We report validations on 320 scans containing 5,273 annotated slices which are publicly available through the Multi-Centre, Multi-Vendor, and Multi-Disease Cardiac Segmentation (M&Ms) Challenge. We achieved successful localization of the left ventricle in 89.63% of the cases and a Dice coefficient of 0.873 on diastole slices and 0.770 on systole slices. The proposed technique is based on traditional image processing techniques with a performance on par with the deep learning techniques. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2624488841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624488841</sourcerecordid><originalsourceid>FETCH-proquest_journals_26244888413</originalsourceid><addsrcrecordid>eNqNi0EKwjAURIMgWLR3-OC60CZpzVaKomA3Km5LiL8hpU00Se9vBQ_gaoY3bxYkoYwVmeCUrkgaQp_nOa12tCxZQpr9FN0oo1FwQz2ijXN3FlwHF-wiPGbijRoQjIVa-qeRChqpLX4vVwzOSqsQzqPUGDZk2ckhYPrLNdkeD_f6lL28e08YYtu7ydt5amlFORdC8IL9Z30Ab5I9iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624488841</pqid></control><display><type>article</type><title>Automatic Segmentation of Left Ventricle in Cardiac Magnetic Resonance Images</title><source>Free E- Journals</source><creator>Chhabra, Garvit ; Gagan, J H ; Kumar, J R Harish</creator><creatorcontrib>Chhabra, Garvit ; Gagan, J H ; Kumar, J R Harish</creatorcontrib><description>Segmentation of the left ventricle in cardiac magnetic resonance imaging MRI scans enables cardiologists to calculate the volume of the left ventricle and subsequently its ejection fraction. The ejection fraction is a measurement that expresses the percentage of blood leaving the heart with each contraction. Cardiologists often use ejection fraction to determine one's cardiac function. We propose multiscale template matching technique for detection and an elliptical active disc for automated segmentation of the left ventricle in MR images. The elliptical active disc optimizes the local energy function with respect to its five free parameters which define the disc. Gradient descent is used to minimize the energy function along with Green's theorem to optimize the computation expenses. We report validations on 320 scans containing 5,273 annotated slices which are publicly available through the Multi-Centre, Multi-Vendor, and Multi-Disease Cardiac Segmentation (M&Ms) Challenge. We achieved successful localization of the left ventricle in 89.63% of the cases and a Dice coefficient of 0.873 on diastole slices and 0.770 on systole slices. The proposed technique is based on traditional image processing techniques with a performance on par with the deep learning techniques.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cardiology ; Clean energy ; Diastole ; Ejection fraction ; Image processing ; Image segmentation ; Magnetic resonance imaging ; Mathematical analysis ; Medical imaging ; Systole ; Template matching</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Chhabra, Garvit</creatorcontrib><creatorcontrib>Gagan, J H</creatorcontrib><creatorcontrib>Kumar, J R Harish</creatorcontrib><title>Automatic Segmentation of Left Ventricle in Cardiac Magnetic Resonance Images</title><title>arXiv.org</title><description>Segmentation of the left ventricle in cardiac magnetic resonance imaging MRI scans enables cardiologists to calculate the volume of the left ventricle and subsequently its ejection fraction. The ejection fraction is a measurement that expresses the percentage of blood leaving the heart with each contraction. Cardiologists often use ejection fraction to determine one's cardiac function. We propose multiscale template matching technique for detection and an elliptical active disc for automated segmentation of the left ventricle in MR images. The elliptical active disc optimizes the local energy function with respect to its five free parameters which define the disc. Gradient descent is used to minimize the energy function along with Green's theorem to optimize the computation expenses. We report validations on 320 scans containing 5,273 annotated slices which are publicly available through the Multi-Centre, Multi-Vendor, and Multi-Disease Cardiac Segmentation (M&Ms) Challenge. We achieved successful localization of the left ventricle in 89.63% of the cases and a Dice coefficient of 0.873 on diastole slices and 0.770 on systole slices. The proposed technique is based on traditional image processing techniques with a performance on par with the deep learning techniques.</description><subject>Cardiology</subject><subject>Clean energy</subject><subject>Diastole</subject><subject>Ejection fraction</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Systole</subject><subject>Template matching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0EKwjAURIMgWLR3-OC60CZpzVaKomA3Km5LiL8hpU00Se9vBQ_gaoY3bxYkoYwVmeCUrkgaQp_nOa12tCxZQpr9FN0oo1FwQz2ijXN3FlwHF-wiPGbijRoQjIVa-qeRChqpLX4vVwzOSqsQzqPUGDZk2ckhYPrLNdkeD_f6lL28e08YYtu7ydt5amlFORdC8IL9Z30Ab5I9iw</recordid><startdate>20220130</startdate><enddate>20220130</enddate><creator>Chhabra, Garvit</creator><creator>Gagan, J H</creator><creator>Kumar, J R Harish</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220130</creationdate><title>Automatic Segmentation of Left Ventricle in Cardiac Magnetic Resonance Images</title><author>Chhabra, Garvit ; Gagan, J H ; Kumar, J R Harish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26244888413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cardiology</topic><topic>Clean energy</topic><topic>Diastole</topic><topic>Ejection fraction</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Systole</topic><topic>Template matching</topic><toplevel>online_resources</toplevel><creatorcontrib>Chhabra, Garvit</creatorcontrib><creatorcontrib>Gagan, J H</creatorcontrib><creatorcontrib>Kumar, J R Harish</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhabra, Garvit</au><au>Gagan, J H</au><au>Kumar, J R Harish</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automatic Segmentation of Left Ventricle in Cardiac Magnetic Resonance Images</atitle><jtitle>arXiv.org</jtitle><date>2022-01-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Segmentation of the left ventricle in cardiac magnetic resonance imaging MRI scans enables cardiologists to calculate the volume of the left ventricle and subsequently its ejection fraction. The ejection fraction is a measurement that expresses the percentage of blood leaving the heart with each contraction. Cardiologists often use ejection fraction to determine one's cardiac function. We propose multiscale template matching technique for detection and an elliptical active disc for automated segmentation of the left ventricle in MR images. The elliptical active disc optimizes the local energy function with respect to its five free parameters which define the disc. Gradient descent is used to minimize the energy function along with Green's theorem to optimize the computation expenses. We report validations on 320 scans containing 5,273 annotated slices which are publicly available through the Multi-Centre, Multi-Vendor, and Multi-Disease Cardiac Segmentation (M&Ms) Challenge. We achieved successful localization of the left ventricle in 89.63% of the cases and a Dice coefficient of 0.873 on diastole slices and 0.770 on systole slices. The proposed technique is based on traditional image processing techniques with a performance on par with the deep learning techniques.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2624488841 |
source | Free E- Journals |
subjects | Cardiology Clean energy Diastole Ejection fraction Image processing Image segmentation Magnetic resonance imaging Mathematical analysis Medical imaging Systole Template matching |
title | Automatic Segmentation of Left Ventricle in Cardiac Magnetic Resonance Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automatic%20Segmentation%20of%20Left%20Ventricle%20in%20Cardiac%20Magnetic%20Resonance%20Images&rft.jtitle=arXiv.org&rft.au=Chhabra,%20Garvit&rft.date=2022-01-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2624488841%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624488841&rft_id=info:pmid/&rfr_iscdi=true |