MVP-Net: Multiple View Pointwise Semantic Segmentation of Large-Scale Point Clouds

Semantic segmentation of 3D point cloud is an essential task for autonomous driving environment perception. The pipeline of most pointwise point cloud semantic segmentation methods includes points sampling, neighbor searching, feature aggregation, and classification. Neighbor searching method like K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Luo, Chuanyu, Li, Xiaohan, Cheng, Nuo, Li, Han, Lei, Shengguang, Li, Pu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Luo, Chuanyu
Li, Xiaohan
Cheng, Nuo
Li, Han
Lei, Shengguang
Li, Pu
description Semantic segmentation of 3D point cloud is an essential task for autonomous driving environment perception. The pipeline of most pointwise point cloud semantic segmentation methods includes points sampling, neighbor searching, feature aggregation, and classification. Neighbor searching method like K-nearest neighbors algorithm, KNN, has been widely applied. However, the complexity of KNN is always a bottleneck of efficiency. In this paper, we propose an end-to-end neural architecture, Multiple View Pointwise Net, MVP-Net, to efficiently and directly infer large-scale outdoor point cloud without KNN or any complex pre/postprocessing. Instead, assumption-based space filling curves and multi-rotation of point cloud methods are introduced to point feature aggregation and receptive field expanding. Numerical experiments show that the proposed MVP-Net is 11 times faster than the most efficient pointwise semantic segmentation method RandLA-Net and achieves the same accuracy on the large-scale benchmark SemanticKITTI dataset.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2624486930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624486930</sourcerecordid><originalsourceid>FETCH-proquest_journals_26244869303</originalsourceid><addsrcrecordid>eNqNi9EKgjAYRkcQJOU7DLoerE3NupWii4zI8FaG_cpkbuY2fP0keoCuvgPnfAsUMM53JI0YW6HQ2o5SypI9i2MeoEde3skN3BHnXjk5KMClhAnfjdRukhZwAb3QTtYztD1oJ5w0GpsGX8XYAilqMX--Oc6U8S-7QctGKAvhb9doez49swsZRvP2YF3VGT_qWVUsYVGUJgdO-X_VB3JoPuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624486930</pqid></control><display><type>article</type><title>MVP-Net: Multiple View Pointwise Semantic Segmentation of Large-Scale Point Clouds</title><source>Freely Accessible Journals</source><creator>Luo, Chuanyu ; Li, Xiaohan ; Cheng, Nuo ; Li, Han ; Lei, Shengguang ; Li, Pu</creator><creatorcontrib>Luo, Chuanyu ; Li, Xiaohan ; Cheng, Nuo ; Li, Han ; Lei, Shengguang ; Li, Pu</creatorcontrib><description>Semantic segmentation of 3D point cloud is an essential task for autonomous driving environment perception. The pipeline of most pointwise point cloud semantic segmentation methods includes points sampling, neighbor searching, feature aggregation, and classification. Neighbor searching method like K-nearest neighbors algorithm, KNN, has been widely applied. However, the complexity of KNN is always a bottleneck of efficiency. In this paper, we propose an end-to-end neural architecture, Multiple View Pointwise Net, MVP-Net, to efficiently and directly infer large-scale outdoor point cloud without KNN or any complex pre/postprocessing. Instead, assumption-based space filling curves and multi-rotation of point cloud methods are introduced to point feature aggregation and receptive field expanding. Numerical experiments show that the proposed MVP-Net is 11 times faster than the most efficient pointwise semantic segmentation method RandLA-Net and achieves the same accuracy on the large-scale benchmark SemanticKITTI dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agglomeration ; Algorithms ; Complexity ; Image segmentation ; Search methods ; Semantic segmentation ; Semantics ; Three dimensional models</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Luo, Chuanyu</creatorcontrib><creatorcontrib>Li, Xiaohan</creatorcontrib><creatorcontrib>Cheng, Nuo</creatorcontrib><creatorcontrib>Li, Han</creatorcontrib><creatorcontrib>Lei, Shengguang</creatorcontrib><creatorcontrib>Li, Pu</creatorcontrib><title>MVP-Net: Multiple View Pointwise Semantic Segmentation of Large-Scale Point Clouds</title><title>arXiv.org</title><description>Semantic segmentation of 3D point cloud is an essential task for autonomous driving environment perception. The pipeline of most pointwise point cloud semantic segmentation methods includes points sampling, neighbor searching, feature aggregation, and classification. Neighbor searching method like K-nearest neighbors algorithm, KNN, has been widely applied. However, the complexity of KNN is always a bottleneck of efficiency. In this paper, we propose an end-to-end neural architecture, Multiple View Pointwise Net, MVP-Net, to efficiently and directly infer large-scale outdoor point cloud without KNN or any complex pre/postprocessing. Instead, assumption-based space filling curves and multi-rotation of point cloud methods are introduced to point feature aggregation and receptive field expanding. Numerical experiments show that the proposed MVP-Net is 11 times faster than the most efficient pointwise semantic segmentation method RandLA-Net and achieves the same accuracy on the large-scale benchmark SemanticKITTI dataset.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Image segmentation</subject><subject>Search methods</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi9EKgjAYRkcQJOU7DLoerE3NupWii4zI8FaG_cpkbuY2fP0keoCuvgPnfAsUMM53JI0YW6HQ2o5SypI9i2MeoEde3skN3BHnXjk5KMClhAnfjdRukhZwAb3QTtYztD1oJ5w0GpsGX8XYAilqMX--Oc6U8S-7QctGKAvhb9doez49swsZRvP2YF3VGT_qWVUsYVGUJgdO-X_VB3JoPuQ</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Luo, Chuanyu</creator><creator>Li, Xiaohan</creator><creator>Cheng, Nuo</creator><creator>Li, Han</creator><creator>Lei, Shengguang</creator><creator>Li, Pu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220531</creationdate><title>MVP-Net: Multiple View Pointwise Semantic Segmentation of Large-Scale Point Clouds</title><author>Luo, Chuanyu ; Li, Xiaohan ; Cheng, Nuo ; Li, Han ; Lei, Shengguang ; Li, Pu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26244869303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Image segmentation</topic><topic>Search methods</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, Chuanyu</creatorcontrib><creatorcontrib>Li, Xiaohan</creatorcontrib><creatorcontrib>Cheng, Nuo</creatorcontrib><creatorcontrib>Li, Han</creatorcontrib><creatorcontrib>Lei, Shengguang</creatorcontrib><creatorcontrib>Li, Pu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Chuanyu</au><au>Li, Xiaohan</au><au>Cheng, Nuo</au><au>Li, Han</au><au>Lei, Shengguang</au><au>Li, Pu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MVP-Net: Multiple View Pointwise Semantic Segmentation of Large-Scale Point Clouds</atitle><jtitle>arXiv.org</jtitle><date>2022-05-31</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Semantic segmentation of 3D point cloud is an essential task for autonomous driving environment perception. The pipeline of most pointwise point cloud semantic segmentation methods includes points sampling, neighbor searching, feature aggregation, and classification. Neighbor searching method like K-nearest neighbors algorithm, KNN, has been widely applied. However, the complexity of KNN is always a bottleneck of efficiency. In this paper, we propose an end-to-end neural architecture, Multiple View Pointwise Net, MVP-Net, to efficiently and directly infer large-scale outdoor point cloud without KNN or any complex pre/postprocessing. Instead, assumption-based space filling curves and multi-rotation of point cloud methods are introduced to point feature aggregation and receptive field expanding. Numerical experiments show that the proposed MVP-Net is 11 times faster than the most efficient pointwise semantic segmentation method RandLA-Net and achieves the same accuracy on the large-scale benchmark SemanticKITTI dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2624486930
source Freely Accessible Journals
subjects Agglomeration
Algorithms
Complexity
Image segmentation
Search methods
Semantic segmentation
Semantics
Three dimensional models
title MVP-Net: Multiple View Pointwise Semantic Segmentation of Large-Scale Point Clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MVP-Net:%20Multiple%20View%20Pointwise%20Semantic%20Segmentation%20of%20Large-Scale%20Point%20Clouds&rft.jtitle=arXiv.org&rft.au=Luo,%20Chuanyu&rft.date=2022-05-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2624486930%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624486930&rft_id=info:pmid/&rfr_iscdi=true