Stability Results for Bounded Stationary Solutions of Reaction-Diffusion-ODE Systems

Reaction-diffusion equations coupled to ordinary differential equations (ODEs) may exhibit spatially low-regular stationary solutions. This work provides a comprehensive theory of asymptotic stability of bounded, discontinuous or continuous, stationary solutions of reaction-diffusion-ODE systems. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Kowall, Chris, Marciniak-Czochra, Anna, Münnich, Finn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reaction-diffusion equations coupled to ordinary differential equations (ODEs) may exhibit spatially low-regular stationary solutions. This work provides a comprehensive theory of asymptotic stability of bounded, discontinuous or continuous, stationary solutions of reaction-diffusion-ODE systems. We characterize the spectrum of the linearized operator and relate its spectral properties to the corresponding semigroup properties. Considering the function spaces \(L^\infty(\Omega)^{m+k}, L^\infty(\Omega)^m \times C(\overline{\Omega})^k\) and \(C(\overline{\Omega})^{m+k}\), we establish a sign condition on the spectral bound of the linearized operator, which implies nonlinear stability or instability of the stationary pattern.
ISSN:2331-8422