Stability Results for Bounded Stationary Solutions of Reaction-Diffusion-ODE Systems
Reaction-diffusion equations coupled to ordinary differential equations (ODEs) may exhibit spatially low-regular stationary solutions. This work provides a comprehensive theory of asymptotic stability of bounded, discontinuous or continuous, stationary solutions of reaction-diffusion-ODE systems. We...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reaction-diffusion equations coupled to ordinary differential equations (ODEs) may exhibit spatially low-regular stationary solutions. This work provides a comprehensive theory of asymptotic stability of bounded, discontinuous or continuous, stationary solutions of reaction-diffusion-ODE systems. We characterize the spectrum of the linearized operator and relate its spectral properties to the corresponding semigroup properties. Considering the function spaces \(L^\infty(\Omega)^{m+k}, L^\infty(\Omega)^m \times C(\overline{\Omega})^k\) and \(C(\overline{\Omega})^{m+k}\), we establish a sign condition on the spectral bound of the linearized operator, which implies nonlinear stability or instability of the stationary pattern. |
---|---|
ISSN: | 2331-8422 |