A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing

A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and consi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2022-02, Vol.122 (4), p.3313-3345
Hauptverfasser: Arora, Neeraj, Banyal, Rohitash Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3345
container_issue 4
container_start_page 3313
container_title Wireless personal communications
container_volume 122
creator Arora, Neeraj
Banyal, Rohitash Kumar
description A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and considered to be an NP-hard problem. Therefore, the meta-heuristic approaches have been used to find out optimal scheduling of workflow schedules. The proposed algorithm named PSO–GWO is the combination of two well-known meta-heuristic algorithms Particle Swarm Optimization and Grey Wolf Optimization. The experiment result shows that the PSO–GWO algorithm decreases the average total execution cost and average total execution time in comparison to standard Particle Swarm Optimization and Grey Wolf Optimization algorithm.
doi_str_mv 10.1007/s11277-021-09065-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624218045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624218045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1c52a8bd949e6e06c1b97cc453488aab9daa458288a337b15c56116c57990fa23</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19GcpGmby1HUCQMHKnoX0jTdOrtmJi2y_XqjFbzz6nA-nvfAg9Al0GugNLsJACzLCGVAqKSpIIcjNAGRMZLz5O0YTahkkqQM2Ck6C2FDacQkm6DlDC-17xvTWnzv7R6_urbG833pmwrP2pXzTb_e4tr5uPHvdes-8ZNZ22pom26Fmw4XrRsqXLjtbujj6Byd1LoN9uK3TtHL3e1zMSeLx_uHYrYghoPsCRjBdF5WMpE2tTQ1UMrMmETwJM-1LmWldSJyFhvOsxKEESlAakQmJa0141N0NebuvPsYbOjVxg2-iy8VS1nCIKcxbIrYeGW8C8HbWu18s9V-r4Cqb3NqNKeiOfVjTh0ixEcoxONuZf1f9D_UF4iPcLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624218045</pqid></control><display><type>article</type><title>A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing</title><source>Springer Nature - Complete Springer Journals</source><creator>Arora, Neeraj ; Banyal, Rohitash Kumar</creator><creatorcontrib>Arora, Neeraj ; Banyal, Rohitash Kumar</creatorcontrib><description>A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and considered to be an NP-hard problem. Therefore, the meta-heuristic approaches have been used to find out optimal scheduling of workflow schedules. The proposed algorithm named PSO–GWO is the combination of two well-known meta-heuristic algorithms Particle Swarm Optimization and Grey Wolf Optimization. The experiment result shows that the PSO–GWO algorithm decreases the average total execution cost and average total execution time in comparison to standard Particle Swarm Optimization and Grey Wolf Optimization algorithm.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-021-09065-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cloud computing ; Communications Engineering ; Computer Communication Networks ; Engineering ; Heuristic methods ; Networks ; Optimization ; Particle swarm optimization ; Scheduling ; Signal,Image and Speech Processing ; Task complexity ; Task scheduling ; Virtual environments ; Workflow</subject><ispartof>Wireless personal communications, 2022-02, Vol.122 (4), p.3313-3345</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1c52a8bd949e6e06c1b97cc453488aab9daa458288a337b15c56116c57990fa23</citedby><cites>FETCH-LOGICAL-c319t-1c52a8bd949e6e06c1b97cc453488aab9daa458288a337b15c56116c57990fa23</cites><orcidid>0000-0002-6209-7800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-021-09065-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-021-09065-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arora, Neeraj</creatorcontrib><creatorcontrib>Banyal, Rohitash Kumar</creatorcontrib><title>A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and considered to be an NP-hard problem. Therefore, the meta-heuristic approaches have been used to find out optimal scheduling of workflow schedules. The proposed algorithm named PSO–GWO is the combination of two well-known meta-heuristic algorithms Particle Swarm Optimization and Grey Wolf Optimization. The experiment result shows that the PSO–GWO algorithm decreases the average total execution cost and average total execution time in comparison to standard Particle Swarm Optimization and Grey Wolf Optimization algorithm.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Heuristic methods</subject><subject>Networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Scheduling</subject><subject>Signal,Image and Speech Processing</subject><subject>Task complexity</subject><subject>Task scheduling</subject><subject>Virtual environments</subject><subject>Workflow</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19GcpGmby1HUCQMHKnoX0jTdOrtmJi2y_XqjFbzz6nA-nvfAg9Al0GugNLsJACzLCGVAqKSpIIcjNAGRMZLz5O0YTahkkqQM2Ck6C2FDacQkm6DlDC-17xvTWnzv7R6_urbG833pmwrP2pXzTb_e4tr5uPHvdes-8ZNZ22pom26Fmw4XrRsqXLjtbujj6Byd1LoN9uK3TtHL3e1zMSeLx_uHYrYghoPsCRjBdF5WMpE2tTQ1UMrMmETwJM-1LmWldSJyFhvOsxKEESlAakQmJa0141N0NebuvPsYbOjVxg2-iy8VS1nCIKcxbIrYeGW8C8HbWu18s9V-r4Cqb3NqNKeiOfVjTh0ixEcoxONuZf1f9D_UF4iPcLo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Arora, Neeraj</creator><creator>Banyal, Rohitash Kumar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6209-7800</orcidid></search><sort><creationdate>20220201</creationdate><title>A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing</title><author>Arora, Neeraj ; Banyal, Rohitash Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1c52a8bd949e6e06c1b97cc453488aab9daa458288a337b15c56116c57990fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Heuristic methods</topic><topic>Networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Scheduling</topic><topic>Signal,Image and Speech Processing</topic><topic>Task complexity</topic><topic>Task scheduling</topic><topic>Virtual environments</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arora, Neeraj</creatorcontrib><creatorcontrib>Banyal, Rohitash Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Neeraj</au><au>Banyal, Rohitash Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>122</volume><issue>4</issue><spage>3313</spage><epage>3345</epage><pages>3313-3345</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and considered to be an NP-hard problem. Therefore, the meta-heuristic approaches have been used to find out optimal scheduling of workflow schedules. The proposed algorithm named PSO–GWO is the combination of two well-known meta-heuristic algorithms Particle Swarm Optimization and Grey Wolf Optimization. The experiment result shows that the PSO–GWO algorithm decreases the average total execution cost and average total execution time in comparison to standard Particle Swarm Optimization and Grey Wolf Optimization algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-021-09065-z</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-6209-7800</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2022-02, Vol.122 (4), p.3313-3345
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2624218045
source Springer Nature - Complete Springer Journals
subjects Algorithms
Cloud computing
Communications Engineering
Computer Communication Networks
Engineering
Heuristic methods
Networks
Optimization
Particle swarm optimization
Scheduling
Signal,Image and Speech Processing
Task complexity
Task scheduling
Virtual environments
Workflow
title A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Particle%20Grey%20Wolf%20Hybrid%20Algorithm%20for%20Workflow%20Scheduling%20in%20Cloud%20Computing&rft.jtitle=Wireless%20personal%20communications&rft.au=Arora,%20Neeraj&rft.date=2022-02-01&rft.volume=122&rft.issue=4&rft.spage=3313&rft.epage=3345&rft.pages=3313-3345&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-021-09065-z&rft_dat=%3Cproquest_cross%3E2624218045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624218045&rft_id=info:pmid/&rfr_iscdi=true