A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing
A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and consi...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2022-02, Vol.122 (4), p.3313-3345 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3345 |
---|---|
container_issue | 4 |
container_start_page | 3313 |
container_title | Wireless personal communications |
container_volume | 122 |
creator | Arora, Neeraj Banyal, Rohitash Kumar |
description | A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and considered to be an NP-hard problem. Therefore, the meta-heuristic approaches have been used to find out optimal scheduling of workflow schedules. The proposed algorithm named PSO–GWO is the combination of two well-known meta-heuristic algorithms Particle Swarm Optimization and Grey Wolf Optimization. The experiment result shows that the PSO–GWO algorithm decreases the average total execution cost and average total execution time in comparison to standard Particle Swarm Optimization and Grey Wolf Optimization algorithm. |
doi_str_mv | 10.1007/s11277-021-09065-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624218045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624218045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1c52a8bd949e6e06c1b97cc453488aab9daa458288a337b15c56116c57990fa23</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19GcpGmby1HUCQMHKnoX0jTdOrtmJi2y_XqjFbzz6nA-nvfAg9Al0GugNLsJACzLCGVAqKSpIIcjNAGRMZLz5O0YTahkkqQM2Ck6C2FDacQkm6DlDC-17xvTWnzv7R6_urbG833pmwrP2pXzTb_e4tr5uPHvdes-8ZNZ22pom26Fmw4XrRsqXLjtbujj6Byd1LoN9uK3TtHL3e1zMSeLx_uHYrYghoPsCRjBdF5WMpE2tTQ1UMrMmETwJM-1LmWldSJyFhvOsxKEESlAakQmJa0141N0NebuvPsYbOjVxg2-iy8VS1nCIKcxbIrYeGW8C8HbWu18s9V-r4Cqb3NqNKeiOfVjTh0ixEcoxONuZf1f9D_UF4iPcLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624218045</pqid></control><display><type>article</type><title>A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing</title><source>Springer Nature - Complete Springer Journals</source><creator>Arora, Neeraj ; Banyal, Rohitash Kumar</creator><creatorcontrib>Arora, Neeraj ; Banyal, Rohitash Kumar</creatorcontrib><description>A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and considered to be an NP-hard problem. Therefore, the meta-heuristic approaches have been used to find out optimal scheduling of workflow schedules. The proposed algorithm named PSO–GWO is the combination of two well-known meta-heuristic algorithms Particle Swarm Optimization and Grey Wolf Optimization. The experiment result shows that the PSO–GWO algorithm decreases the average total execution cost and average total execution time in comparison to standard Particle Swarm Optimization and Grey Wolf Optimization algorithm.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-021-09065-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cloud computing ; Communications Engineering ; Computer Communication Networks ; Engineering ; Heuristic methods ; Networks ; Optimization ; Particle swarm optimization ; Scheduling ; Signal,Image and Speech Processing ; Task complexity ; Task scheduling ; Virtual environments ; Workflow</subject><ispartof>Wireless personal communications, 2022-02, Vol.122 (4), p.3313-3345</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1c52a8bd949e6e06c1b97cc453488aab9daa458288a337b15c56116c57990fa23</citedby><cites>FETCH-LOGICAL-c319t-1c52a8bd949e6e06c1b97cc453488aab9daa458288a337b15c56116c57990fa23</cites><orcidid>0000-0002-6209-7800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-021-09065-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-021-09065-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arora, Neeraj</creatorcontrib><creatorcontrib>Banyal, Rohitash Kumar</creatorcontrib><title>A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and considered to be an NP-hard problem. Therefore, the meta-heuristic approaches have been used to find out optimal scheduling of workflow schedules. The proposed algorithm named PSO–GWO is the combination of two well-known meta-heuristic algorithms Particle Swarm Optimization and Grey Wolf Optimization. The experiment result shows that the PSO–GWO algorithm decreases the average total execution cost and average total execution time in comparison to standard Particle Swarm Optimization and Grey Wolf Optimization algorithm.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Heuristic methods</subject><subject>Networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Scheduling</subject><subject>Signal,Image and Speech Processing</subject><subject>Task complexity</subject><subject>Task scheduling</subject><subject>Virtual environments</subject><subject>Workflow</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19GcpGmby1HUCQMHKnoX0jTdOrtmJi2y_XqjFbzz6nA-nvfAg9Al0GugNLsJACzLCGVAqKSpIIcjNAGRMZLz5O0YTahkkqQM2Ck6C2FDacQkm6DlDC-17xvTWnzv7R6_urbG833pmwrP2pXzTb_e4tr5uPHvdes-8ZNZ22pom26Fmw4XrRsqXLjtbujj6Byd1LoN9uK3TtHL3e1zMSeLx_uHYrYghoPsCRjBdF5WMpE2tTQ1UMrMmETwJM-1LmWldSJyFhvOsxKEESlAakQmJa0141N0NebuvPsYbOjVxg2-iy8VS1nCIKcxbIrYeGW8C8HbWu18s9V-r4Cqb3NqNKeiOfVjTh0ixEcoxONuZf1f9D_UF4iPcLo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Arora, Neeraj</creator><creator>Banyal, Rohitash Kumar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6209-7800</orcidid></search><sort><creationdate>20220201</creationdate><title>A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing</title><author>Arora, Neeraj ; Banyal, Rohitash Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1c52a8bd949e6e06c1b97cc453488aab9daa458288a337b15c56116c57990fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Heuristic methods</topic><topic>Networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Scheduling</topic><topic>Signal,Image and Speech Processing</topic><topic>Task complexity</topic><topic>Task scheduling</topic><topic>Virtual environments</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arora, Neeraj</creatorcontrib><creatorcontrib>Banyal, Rohitash Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Neeraj</au><au>Banyal, Rohitash Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>122</volume><issue>4</issue><spage>3313</spage><epage>3345</epage><pages>3313-3345</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>A workflow consists of a set of tasks that are dependent on each other and scheduling these dependent tasks to the virtual machines is one of the complex problems in cloud computing. Moreover, workflow scheduling becomes more complex with the increasing number of tasks and virtual machines and considered to be an NP-hard problem. Therefore, the meta-heuristic approaches have been used to find out optimal scheduling of workflow schedules. The proposed algorithm named PSO–GWO is the combination of two well-known meta-heuristic algorithms Particle Swarm Optimization and Grey Wolf Optimization. The experiment result shows that the PSO–GWO algorithm decreases the average total execution cost and average total execution time in comparison to standard Particle Swarm Optimization and Grey Wolf Optimization algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-021-09065-z</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-6209-7800</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2022-02, Vol.122 (4), p.3313-3345 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2624218045 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Cloud computing Communications Engineering Computer Communication Networks Engineering Heuristic methods Networks Optimization Particle swarm optimization Scheduling Signal,Image and Speech Processing Task complexity Task scheduling Virtual environments Workflow |
title | A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Particle%20Grey%20Wolf%20Hybrid%20Algorithm%20for%20Workflow%20Scheduling%20in%20Cloud%20Computing&rft.jtitle=Wireless%20personal%20communications&rft.au=Arora,%20Neeraj&rft.date=2022-02-01&rft.volume=122&rft.issue=4&rft.spage=3313&rft.epage=3345&rft.pages=3313-3345&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-021-09065-z&rft_dat=%3Cproquest_cross%3E2624218045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624218045&rft_id=info:pmid/&rfr_iscdi=true |