Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C6H5CNH+)

Context. The recent detection in pre-stellar sources of cyano-substituted and pure hydrocarbon cycles has emphasized the importance of aromatic chemistry in the earliest stages of star formation. Ultraviolet (UV) and vacuum-UV (VUV) radiation is ubiquitous in space and thus the photo-processing of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2022-01, Vol.657
Hauptverfasser: Jacovella, Ugo, Noble, Jennifer A, Guliani, Alexandre, Hansen, Christopher S, Trevitt, Adam J, Mouzay, Julie, Couturier-Tamburelli, Isabelle, Pietri, Nathalie, Nahon, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 657
creator Jacovella, Ugo
Noble, Jennifer A
Guliani, Alexandre
Hansen, Christopher S
Trevitt, Adam J
Mouzay, Julie
Couturier-Tamburelli, Isabelle
Pietri, Nathalie
Nahon, Laurent
description Context. The recent detection in pre-stellar sources of cyano-substituted and pure hydrocarbon cycles has emphasized the importance of aromatic chemistry in the earliest stages of star formation. Ultraviolet (UV) and vacuum-UV (VUV) radiation is ubiquitous in space and thus the photo-processing of small cyclic ions may open a window onto rich chemical networks and lead to the formation of larger aromatics in space. Aims. The aim is to investigate the fate of protonated benzonitrile species after UV and VUV photoexcitation and the subsequent potential impact on stellar and interstellar chemistry. Methods. Protonated benzonitrile was isolated in a linear ion trap prior to irradiation with UV and VUV radiation (4.5–13.6 eV) from the DESIRS beamline at synchrotron SOLEIL. The study was extended down to 3.5 eV using a cryogenic Paul ion trap coupled to an OPO laser at the PIIM laboratory. Photodissociation action spectra were obtained by monitoring the photofragment yields as a function of photon energy. Results. The UV/VUV photodissociation action spectra of protonated benzonitrile show structured bands from 3.8 to 9 eV. The primary dissociation channel of protonated benzonitrile corresponds to HCN/HNC loss and formation of the phenylium cation (C6H5+); whereas at high energies, a minor channel is observed that correlates with HC3N loss and formation of C4H5+. Conclusions. The UV and VUV photodestruction of protonated benzonitrile leads to the formation of a highly reactive cationic species, C6H5+, predicted to be an important precursor of larger aromatic molecules in space, such as polycyclic aromatic hydrocarbons. The inclusion of C6H5+ – a precursor of benzene and, by extension, of benzonitrile – as the result of formation via the photodissociation of protonated benzonitrile in current astrochemical models could improve the predicted abundance of benzonitrile, which is currently underestimated.
doi_str_mv 10.1051/0004-6361/202142206
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2624209491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624209491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1236-fb0d0763907f5f41e3be38b6f4df674d220db66c2ff13254ff59f390565711f3</originalsourceid><addsrcrecordid>eNpNT8tKAzEUDaLgWP0CNwE3isTm5nGns5RBrVB0UxeuyjxydcqY1EmmC7_eAUVcHc7hcB6MnYO8AWlhLqU0AjXCXEkFRimJBywDo5WQucFDlv05jtlJjNuJKljojL2-9Gmo9l3oXeKVb_m-asbxg4__5N17SEHshtC4GDv_xgPxiaXgq-RaXjv_FXyXhq53_LLEpS2fltdXp-yIqj66s1-csfX93bpcitXzw2N5uxINKI2CatnKHHUhc7JkwOna6UWNZFrC3LTTl7ZGbBQRaGUNkS1oclu0OQDpGbv4iZ0WfY4ups02jIOfGjcKlVGyMAXobyDtU8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624209491</pqid></control><display><type>article</type><title>Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C6H5CNH+)</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jacovella, Ugo ; Noble, Jennifer A ; Guliani, Alexandre ; Hansen, Christopher S ; Trevitt, Adam J ; Mouzay, Julie ; Couturier-Tamburelli, Isabelle ; Pietri, Nathalie ; Nahon, Laurent</creator><creatorcontrib>Jacovella, Ugo ; Noble, Jennifer A ; Guliani, Alexandre ; Hansen, Christopher S ; Trevitt, Adam J ; Mouzay, Julie ; Couturier-Tamburelli, Isabelle ; Pietri, Nathalie ; Nahon, Laurent</creatorcontrib><description>Context. The recent detection in pre-stellar sources of cyano-substituted and pure hydrocarbon cycles has emphasized the importance of aromatic chemistry in the earliest stages of star formation. Ultraviolet (UV) and vacuum-UV (VUV) radiation is ubiquitous in space and thus the photo-processing of small cyclic ions may open a window onto rich chemical networks and lead to the formation of larger aromatics in space. Aims. The aim is to investigate the fate of protonated benzonitrile species after UV and VUV photoexcitation and the subsequent potential impact on stellar and interstellar chemistry. Methods. Protonated benzonitrile was isolated in a linear ion trap prior to irradiation with UV and VUV radiation (4.5–13.6 eV) from the DESIRS beamline at synchrotron SOLEIL. The study was extended down to 3.5 eV using a cryogenic Paul ion trap coupled to an OPO laser at the PIIM laboratory. Photodissociation action spectra were obtained by monitoring the photofragment yields as a function of photon energy. Results. The UV/VUV photodissociation action spectra of protonated benzonitrile show structured bands from 3.8 to 9 eV. The primary dissociation channel of protonated benzonitrile corresponds to HCN/HNC loss and formation of the phenylium cation (C6H5+); whereas at high energies, a minor channel is observed that correlates with HC3N loss and formation of C4H5+. Conclusions. The UV and VUV photodestruction of protonated benzonitrile leads to the formation of a highly reactive cationic species, C6H5+, predicted to be an important precursor of larger aromatic molecules in space, such as polycyclic aromatic hydrocarbons. The inclusion of C6H5+ – a precursor of benzene and, by extension, of benzonitrile – as the result of formation via the photodissociation of protonated benzonitrile in current astrochemical models could improve the predicted abundance of benzonitrile, which is currently underestimated.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202142206</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Banded structure ; Benzene ; Benzonitrile ; Cations ; Interstellar chemistry ; Photodissociation ; Photoexcitation ; Polycyclic aromatic hydrocarbons ; Precursors ; Star &amp; galaxy formation ; Star formation ; Synchrotrons ; Ultraviolet radiation</subject><ispartof>Astronomy and astrophysics (Berlin), 2022-01, Vol.657</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1236-fb0d0763907f5f41e3be38b6f4df674d220db66c2ff13254ff59f390565711f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jacovella, Ugo</creatorcontrib><creatorcontrib>Noble, Jennifer A</creatorcontrib><creatorcontrib>Guliani, Alexandre</creatorcontrib><creatorcontrib>Hansen, Christopher S</creatorcontrib><creatorcontrib>Trevitt, Adam J</creatorcontrib><creatorcontrib>Mouzay, Julie</creatorcontrib><creatorcontrib>Couturier-Tamburelli, Isabelle</creatorcontrib><creatorcontrib>Pietri, Nathalie</creatorcontrib><creatorcontrib>Nahon, Laurent</creatorcontrib><title>Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C6H5CNH+)</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The recent detection in pre-stellar sources of cyano-substituted and pure hydrocarbon cycles has emphasized the importance of aromatic chemistry in the earliest stages of star formation. Ultraviolet (UV) and vacuum-UV (VUV) radiation is ubiquitous in space and thus the photo-processing of small cyclic ions may open a window onto rich chemical networks and lead to the formation of larger aromatics in space. Aims. The aim is to investigate the fate of protonated benzonitrile species after UV and VUV photoexcitation and the subsequent potential impact on stellar and interstellar chemistry. Methods. Protonated benzonitrile was isolated in a linear ion trap prior to irradiation with UV and VUV radiation (4.5–13.6 eV) from the DESIRS beamline at synchrotron SOLEIL. The study was extended down to 3.5 eV using a cryogenic Paul ion trap coupled to an OPO laser at the PIIM laboratory. Photodissociation action spectra were obtained by monitoring the photofragment yields as a function of photon energy. Results. The UV/VUV photodissociation action spectra of protonated benzonitrile show structured bands from 3.8 to 9 eV. The primary dissociation channel of protonated benzonitrile corresponds to HCN/HNC loss and formation of the phenylium cation (C6H5+); whereas at high energies, a minor channel is observed that correlates with HC3N loss and formation of C4H5+. Conclusions. The UV and VUV photodestruction of protonated benzonitrile leads to the formation of a highly reactive cationic species, C6H5+, predicted to be an important precursor of larger aromatic molecules in space, such as polycyclic aromatic hydrocarbons. The inclusion of C6H5+ – a precursor of benzene and, by extension, of benzonitrile – as the result of formation via the photodissociation of protonated benzonitrile in current astrochemical models could improve the predicted abundance of benzonitrile, which is currently underestimated.</description><subject>Banded structure</subject><subject>Benzene</subject><subject>Benzonitrile</subject><subject>Cations</subject><subject>Interstellar chemistry</subject><subject>Photodissociation</subject><subject>Photoexcitation</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Precursors</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Synchrotrons</subject><subject>Ultraviolet radiation</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNT8tKAzEUDaLgWP0CNwE3isTm5nGns5RBrVB0UxeuyjxydcqY1EmmC7_eAUVcHc7hcB6MnYO8AWlhLqU0AjXCXEkFRimJBywDo5WQucFDlv05jtlJjNuJKljojL2-9Gmo9l3oXeKVb_m-asbxg4__5N17SEHshtC4GDv_xgPxiaXgq-RaXjv_FXyXhq53_LLEpS2fltdXp-yIqj66s1-csfX93bpcitXzw2N5uxINKI2CatnKHHUhc7JkwOna6UWNZFrC3LTTl7ZGbBQRaGUNkS1oclu0OQDpGbv4iZ0WfY4ups02jIOfGjcKlVGyMAXobyDtU8w</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Jacovella, Ugo</creator><creator>Noble, Jennifer A</creator><creator>Guliani, Alexandre</creator><creator>Hansen, Christopher S</creator><creator>Trevitt, Adam J</creator><creator>Mouzay, Julie</creator><creator>Couturier-Tamburelli, Isabelle</creator><creator>Pietri, Nathalie</creator><creator>Nahon, Laurent</creator><general>EDP Sciences</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C6H5CNH+)</title><author>Jacovella, Ugo ; Noble, Jennifer A ; Guliani, Alexandre ; Hansen, Christopher S ; Trevitt, Adam J ; Mouzay, Julie ; Couturier-Tamburelli, Isabelle ; Pietri, Nathalie ; Nahon, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1236-fb0d0763907f5f41e3be38b6f4df674d220db66c2ff13254ff59f390565711f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Banded structure</topic><topic>Benzene</topic><topic>Benzonitrile</topic><topic>Cations</topic><topic>Interstellar chemistry</topic><topic>Photodissociation</topic><topic>Photoexcitation</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Precursors</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Synchrotrons</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacovella, Ugo</creatorcontrib><creatorcontrib>Noble, Jennifer A</creatorcontrib><creatorcontrib>Guliani, Alexandre</creatorcontrib><creatorcontrib>Hansen, Christopher S</creatorcontrib><creatorcontrib>Trevitt, Adam J</creatorcontrib><creatorcontrib>Mouzay, Julie</creatorcontrib><creatorcontrib>Couturier-Tamburelli, Isabelle</creatorcontrib><creatorcontrib>Pietri, Nathalie</creatorcontrib><creatorcontrib>Nahon, Laurent</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacovella, Ugo</au><au>Noble, Jennifer A</au><au>Guliani, Alexandre</au><au>Hansen, Christopher S</au><au>Trevitt, Adam J</au><au>Mouzay, Julie</au><au>Couturier-Tamburelli, Isabelle</au><au>Pietri, Nathalie</au><au>Nahon, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C6H5CNH+)</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>657</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. The recent detection in pre-stellar sources of cyano-substituted and pure hydrocarbon cycles has emphasized the importance of aromatic chemistry in the earliest stages of star formation. Ultraviolet (UV) and vacuum-UV (VUV) radiation is ubiquitous in space and thus the photo-processing of small cyclic ions may open a window onto rich chemical networks and lead to the formation of larger aromatics in space. Aims. The aim is to investigate the fate of protonated benzonitrile species after UV and VUV photoexcitation and the subsequent potential impact on stellar and interstellar chemistry. Methods. Protonated benzonitrile was isolated in a linear ion trap prior to irradiation with UV and VUV radiation (4.5–13.6 eV) from the DESIRS beamline at synchrotron SOLEIL. The study was extended down to 3.5 eV using a cryogenic Paul ion trap coupled to an OPO laser at the PIIM laboratory. Photodissociation action spectra were obtained by monitoring the photofragment yields as a function of photon energy. Results. The UV/VUV photodissociation action spectra of protonated benzonitrile show structured bands from 3.8 to 9 eV. The primary dissociation channel of protonated benzonitrile corresponds to HCN/HNC loss and formation of the phenylium cation (C6H5+); whereas at high energies, a minor channel is observed that correlates with HC3N loss and formation of C4H5+. Conclusions. The UV and VUV photodestruction of protonated benzonitrile leads to the formation of a highly reactive cationic species, C6H5+, predicted to be an important precursor of larger aromatic molecules in space, such as polycyclic aromatic hydrocarbons. The inclusion of C6H5+ – a precursor of benzene and, by extension, of benzonitrile – as the result of formation via the photodissociation of protonated benzonitrile in current astrochemical models could improve the predicted abundance of benzonitrile, which is currently underestimated.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202142206</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2022-01, Vol.657
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2624209491
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Banded structure
Benzene
Benzonitrile
Cations
Interstellar chemistry
Photodissociation
Photoexcitation
Polycyclic aromatic hydrocarbons
Precursors
Star & galaxy formation
Star formation
Synchrotrons
Ultraviolet radiation
title Ultraviolet and vacuum ultraviolet photo-processing of protonated benzonitrile (C6H5CNH+)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultraviolet%20and%20vacuum%20ultraviolet%20photo-processing%20of%20protonated%20benzonitrile%20(C6H5CNH+)&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Jacovella,%20Ugo&rft.date=2022-01-01&rft.volume=657&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202142206&rft_dat=%3Cproquest%3E2624209491%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624209491&rft_id=info:pmid/&rfr_iscdi=true