Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources

The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-02, Vol.134 (7), p.n/a
Hauptverfasser: Fouilloux, Hugo, Rager, Marie‐Noelle, Ríos, Pablo, Conejero, Salvador, Thomas, Christophe M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Angewandte Chemie
container_volume 134
creator Fouilloux, Hugo
Rager, Marie‐Noelle
Ríos, Pablo
Conejero, Salvador
Thomas, Christophe M.
description The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual‐functional biobased building blocks such as 5‐hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid‐catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential. A variety of renewable polymers has been synthesized from easily accessible biobased hydroxyaldehydes and dihydrosilanes. Using low catalyst loadings of platinum complexes, different polymer architectures were obtained, from random to alternated copolymers. The intrinsic chemical recyclability of these poly(silylether)s is also highlighted.
doi_str_mv 10.1002/ange.202113443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624097667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624097667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1623-1291823cb82c6861900c3006a0536454835c2646467dc551524dcb62f2cc22ca3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMltigSHFPjtOwlaV0CJVgArMVupe0lRpUuxUVf49botgRDecdHrf3btHyDVnA84Y3Gd1gQNgwLmQUpyQHg-BByIKo1PSY0zKIAaZnJML51aMMQVR0iPFpCyWVUfTPC9NiXVL37u6XaIrHW1y-tZU3a0rq65CP7R37oEOjUHnaNvQRyxstsjmFR50a7SO5rZZ0xnWuDvMZ-iarfXAJTnLs8rh1U_vk8-n9GM0Caav4-fRcBoYrkAEHBIegzDzGIyKFU8YM8J7zVgolAxlLEIDSvqKFiYM_YdyYeYKcjAGwGSiT26Oeze2-dqia_XKG6j9SQ0KJEsipSKvGhxVxjbOWcz1xpbrzHaaM70PU-_D1L9heiA5Aruywu4ftR6-jNM_9huAeneF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624097667</pqid></control><display><type>article</type><title>Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fouilloux, Hugo ; Rager, Marie‐Noelle ; Ríos, Pablo ; Conejero, Salvador ; Thomas, Christophe M.</creator><creatorcontrib>Fouilloux, Hugo ; Rager, Marie‐Noelle ; Ríos, Pablo ; Conejero, Salvador ; Thomas, Christophe M.</creatorcontrib><description>The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual‐functional biobased building blocks such as 5‐hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid‐catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential. A variety of renewable polymers has been synthesized from easily accessible biobased hydroxyaldehydes and dihydrosilanes. Using low catalyst loadings of platinum complexes, different polymer architectures were obtained, from random to alternated copolymers. The intrinsic chemical recyclability of these poly(silylether)s is also highlighted.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202113443</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biobased Polymers ; Catalysts ; Chemical recycling ; Chemistry ; Copolymers ; Degradable ; Hydroxymethylfurfural ; Methanolysis ; Platinum ; Poly(Silylether)s ; Polymer chemistry ; Polymers ; Recyclability ; Recycling ; Renewable Monomers ; Renewable resources ; Sustainable materials ; Sustainable yield ; Vanillin</subject><ispartof>Angewandte Chemie, 2022-02, Vol.134 (7), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1623-1291823cb82c6861900c3006a0536454835c2646467dc551524dcb62f2cc22ca3</citedby><cites>FETCH-LOGICAL-c1623-1291823cb82c6861900c3006a0536454835c2646467dc551524dcb62f2cc22ca3</cites><orcidid>0000-0001-8014-4255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202113443$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202113443$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Fouilloux, Hugo</creatorcontrib><creatorcontrib>Rager, Marie‐Noelle</creatorcontrib><creatorcontrib>Ríos, Pablo</creatorcontrib><creatorcontrib>Conejero, Salvador</creatorcontrib><creatorcontrib>Thomas, Christophe M.</creatorcontrib><title>Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources</title><title>Angewandte Chemie</title><description>The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual‐functional biobased building blocks such as 5‐hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid‐catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential. A variety of renewable polymers has been synthesized from easily accessible biobased hydroxyaldehydes and dihydrosilanes. Using low catalyst loadings of platinum complexes, different polymer architectures were obtained, from random to alternated copolymers. The intrinsic chemical recyclability of these poly(silylether)s is also highlighted.</description><subject>Biobased Polymers</subject><subject>Catalysts</subject><subject>Chemical recycling</subject><subject>Chemistry</subject><subject>Copolymers</subject><subject>Degradable</subject><subject>Hydroxymethylfurfural</subject><subject>Methanolysis</subject><subject>Platinum</subject><subject>Poly(Silylether)s</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><subject>Recyclability</subject><subject>Recycling</subject><subject>Renewable Monomers</subject><subject>Renewable resources</subject><subject>Sustainable materials</subject><subject>Sustainable yield</subject><subject>Vanillin</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMltigSHFPjtOwlaV0CJVgArMVupe0lRpUuxUVf49botgRDecdHrf3btHyDVnA84Y3Gd1gQNgwLmQUpyQHg-BByIKo1PSY0zKIAaZnJML51aMMQVR0iPFpCyWVUfTPC9NiXVL37u6XaIrHW1y-tZU3a0rq65CP7R37oEOjUHnaNvQRyxstsjmFR50a7SO5rZZ0xnWuDvMZ-iarfXAJTnLs8rh1U_vk8-n9GM0Caav4-fRcBoYrkAEHBIegzDzGIyKFU8YM8J7zVgolAxlLEIDSvqKFiYM_YdyYeYKcjAGwGSiT26Oeze2-dqia_XKG6j9SQ0KJEsipSKvGhxVxjbOWcz1xpbrzHaaM70PU-_D1L9heiA5Aruywu4ftR6-jNM_9huAeneF</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Fouilloux, Hugo</creator><creator>Rager, Marie‐Noelle</creator><creator>Ríos, Pablo</creator><creator>Conejero, Salvador</creator><creator>Thomas, Christophe M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8014-4255</orcidid></search><sort><creationdate>20220207</creationdate><title>Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources</title><author>Fouilloux, Hugo ; Rager, Marie‐Noelle ; Ríos, Pablo ; Conejero, Salvador ; Thomas, Christophe M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1623-1291823cb82c6861900c3006a0536454835c2646467dc551524dcb62f2cc22ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biobased Polymers</topic><topic>Catalysts</topic><topic>Chemical recycling</topic><topic>Chemistry</topic><topic>Copolymers</topic><topic>Degradable</topic><topic>Hydroxymethylfurfural</topic><topic>Methanolysis</topic><topic>Platinum</topic><topic>Poly(Silylether)s</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><topic>Recyclability</topic><topic>Recycling</topic><topic>Renewable Monomers</topic><topic>Renewable resources</topic><topic>Sustainable materials</topic><topic>Sustainable yield</topic><topic>Vanillin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fouilloux, Hugo</creatorcontrib><creatorcontrib>Rager, Marie‐Noelle</creatorcontrib><creatorcontrib>Ríos, Pablo</creatorcontrib><creatorcontrib>Conejero, Salvador</creatorcontrib><creatorcontrib>Thomas, Christophe M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fouilloux, Hugo</au><au>Rager, Marie‐Noelle</au><au>Ríos, Pablo</au><au>Conejero, Salvador</au><au>Thomas, Christophe M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-02-07</date><risdate>2022</risdate><volume>134</volume><issue>7</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual‐functional biobased building blocks such as 5‐hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid‐catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential. A variety of renewable polymers has been synthesized from easily accessible biobased hydroxyaldehydes and dihydrosilanes. Using low catalyst loadings of platinum complexes, different polymer architectures were obtained, from random to alternated copolymers. The intrinsic chemical recyclability of these poly(silylether)s is also highlighted.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202113443</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8014-4255</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2022-02, Vol.134 (7), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2624097667
source Wiley Online Library Journals Frontfile Complete
subjects Biobased Polymers
Catalysts
Chemical recycling
Chemistry
Copolymers
Degradable
Hydroxymethylfurfural
Methanolysis
Platinum
Poly(Silylether)s
Polymer chemistry
Polymers
Recyclability
Recycling
Renewable Monomers
Renewable resources
Sustainable materials
Sustainable yield
Vanillin
title Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Synthesis%20of%20Poly(silylether)s:%20Access%20to%20Degradable%20Polymers%20from%20Renewable%20Resources&rft.jtitle=Angewandte%20Chemie&rft.au=Fouilloux,%20Hugo&rft.date=2022-02-07&rft.volume=134&rft.issue=7&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202113443&rft_dat=%3Cproquest_cross%3E2624097667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624097667&rft_id=info:pmid/&rfr_iscdi=true