Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources
The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2022-02, Vol.134 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 134 |
creator | Fouilloux, Hugo Rager, Marie‐Noelle Ríos, Pablo Conejero, Salvador Thomas, Christophe M. |
description | The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual‐functional biobased building blocks such as 5‐hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid‐catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential.
A variety of renewable polymers has been synthesized from easily accessible biobased hydroxyaldehydes and dihydrosilanes. Using low catalyst loadings of platinum complexes, different polymer architectures were obtained, from random to alternated copolymers. The intrinsic chemical recyclability of these poly(silylether)s is also highlighted. |
doi_str_mv | 10.1002/ange.202113443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624097667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624097667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1623-1291823cb82c6861900c3006a0536454835c2646467dc551524dcb62f2cc22ca3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMltigSHFPjtOwlaV0CJVgArMVupe0lRpUuxUVf49botgRDecdHrf3btHyDVnA84Y3Gd1gQNgwLmQUpyQHg-BByIKo1PSY0zKIAaZnJML51aMMQVR0iPFpCyWVUfTPC9NiXVL37u6XaIrHW1y-tZU3a0rq65CP7R37oEOjUHnaNvQRyxstsjmFR50a7SO5rZZ0xnWuDvMZ-iarfXAJTnLs8rh1U_vk8-n9GM0Caav4-fRcBoYrkAEHBIegzDzGIyKFU8YM8J7zVgolAxlLEIDSvqKFiYM_YdyYeYKcjAGwGSiT26Oeze2-dqia_XKG6j9SQ0KJEsipSKvGhxVxjbOWcz1xpbrzHaaM70PU-_D1L9heiA5Aruywu4ftR6-jNM_9huAeneF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624097667</pqid></control><display><type>article</type><title>Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fouilloux, Hugo ; Rager, Marie‐Noelle ; Ríos, Pablo ; Conejero, Salvador ; Thomas, Christophe M.</creator><creatorcontrib>Fouilloux, Hugo ; Rager, Marie‐Noelle ; Ríos, Pablo ; Conejero, Salvador ; Thomas, Christophe M.</creatorcontrib><description>The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual‐functional biobased building blocks such as 5‐hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid‐catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential.
A variety of renewable polymers has been synthesized from easily accessible biobased hydroxyaldehydes and dihydrosilanes. Using low catalyst loadings of platinum complexes, different polymer architectures were obtained, from random to alternated copolymers. The intrinsic chemical recyclability of these poly(silylether)s is also highlighted.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202113443</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biobased Polymers ; Catalysts ; Chemical recycling ; Chemistry ; Copolymers ; Degradable ; Hydroxymethylfurfural ; Methanolysis ; Platinum ; Poly(Silylether)s ; Polymer chemistry ; Polymers ; Recyclability ; Recycling ; Renewable Monomers ; Renewable resources ; Sustainable materials ; Sustainable yield ; Vanillin</subject><ispartof>Angewandte Chemie, 2022-02, Vol.134 (7), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1623-1291823cb82c6861900c3006a0536454835c2646467dc551524dcb62f2cc22ca3</citedby><cites>FETCH-LOGICAL-c1623-1291823cb82c6861900c3006a0536454835c2646467dc551524dcb62f2cc22ca3</cites><orcidid>0000-0001-8014-4255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202113443$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202113443$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Fouilloux, Hugo</creatorcontrib><creatorcontrib>Rager, Marie‐Noelle</creatorcontrib><creatorcontrib>Ríos, Pablo</creatorcontrib><creatorcontrib>Conejero, Salvador</creatorcontrib><creatorcontrib>Thomas, Christophe M.</creatorcontrib><title>Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources</title><title>Angewandte Chemie</title><description>The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual‐functional biobased building blocks such as 5‐hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid‐catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential.
A variety of renewable polymers has been synthesized from easily accessible biobased hydroxyaldehydes and dihydrosilanes. Using low catalyst loadings of platinum complexes, different polymer architectures were obtained, from random to alternated copolymers. The intrinsic chemical recyclability of these poly(silylether)s is also highlighted.</description><subject>Biobased Polymers</subject><subject>Catalysts</subject><subject>Chemical recycling</subject><subject>Chemistry</subject><subject>Copolymers</subject><subject>Degradable</subject><subject>Hydroxymethylfurfural</subject><subject>Methanolysis</subject><subject>Platinum</subject><subject>Poly(Silylether)s</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><subject>Recyclability</subject><subject>Recycling</subject><subject>Renewable Monomers</subject><subject>Renewable resources</subject><subject>Sustainable materials</subject><subject>Sustainable yield</subject><subject>Vanillin</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMltigSHFPjtOwlaV0CJVgArMVupe0lRpUuxUVf49botgRDecdHrf3btHyDVnA84Y3Gd1gQNgwLmQUpyQHg-BByIKo1PSY0zKIAaZnJML51aMMQVR0iPFpCyWVUfTPC9NiXVL37u6XaIrHW1y-tZU3a0rq65CP7R37oEOjUHnaNvQRyxstsjmFR50a7SO5rZZ0xnWuDvMZ-iarfXAJTnLs8rh1U_vk8-n9GM0Caav4-fRcBoYrkAEHBIegzDzGIyKFU8YM8J7zVgolAxlLEIDSvqKFiYM_YdyYeYKcjAGwGSiT26Oeze2-dqia_XKG6j9SQ0KJEsipSKvGhxVxjbOWcz1xpbrzHaaM70PU-_D1L9heiA5Aruywu4ftR6-jNM_9huAeneF</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Fouilloux, Hugo</creator><creator>Rager, Marie‐Noelle</creator><creator>Ríos, Pablo</creator><creator>Conejero, Salvador</creator><creator>Thomas, Christophe M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8014-4255</orcidid></search><sort><creationdate>20220207</creationdate><title>Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources</title><author>Fouilloux, Hugo ; Rager, Marie‐Noelle ; Ríos, Pablo ; Conejero, Salvador ; Thomas, Christophe M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1623-1291823cb82c6861900c3006a0536454835c2646467dc551524dcb62f2cc22ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biobased Polymers</topic><topic>Catalysts</topic><topic>Chemical recycling</topic><topic>Chemistry</topic><topic>Copolymers</topic><topic>Degradable</topic><topic>Hydroxymethylfurfural</topic><topic>Methanolysis</topic><topic>Platinum</topic><topic>Poly(Silylether)s</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><topic>Recyclability</topic><topic>Recycling</topic><topic>Renewable Monomers</topic><topic>Renewable resources</topic><topic>Sustainable materials</topic><topic>Sustainable yield</topic><topic>Vanillin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fouilloux, Hugo</creatorcontrib><creatorcontrib>Rager, Marie‐Noelle</creatorcontrib><creatorcontrib>Ríos, Pablo</creatorcontrib><creatorcontrib>Conejero, Salvador</creatorcontrib><creatorcontrib>Thomas, Christophe M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fouilloux, Hugo</au><au>Rager, Marie‐Noelle</au><au>Ríos, Pablo</au><au>Conejero, Salvador</au><au>Thomas, Christophe M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-02-07</date><risdate>2022</risdate><volume>134</volume><issue>7</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual‐functional biobased building blocks such as 5‐hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid‐catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential.
A variety of renewable polymers has been synthesized from easily accessible biobased hydroxyaldehydes and dihydrosilanes. Using low catalyst loadings of platinum complexes, different polymer architectures were obtained, from random to alternated copolymers. The intrinsic chemical recyclability of these poly(silylether)s is also highlighted.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202113443</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8014-4255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2022-02, Vol.134 (7), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2624097667 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biobased Polymers Catalysts Chemical recycling Chemistry Copolymers Degradable Hydroxymethylfurfural Methanolysis Platinum Poly(Silylether)s Polymer chemistry Polymers Recyclability Recycling Renewable Monomers Renewable resources Sustainable materials Sustainable yield Vanillin |
title | Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Synthesis%20of%20Poly(silylether)s:%20Access%20to%20Degradable%20Polymers%20from%20Renewable%20Resources&rft.jtitle=Angewandte%20Chemie&rft.au=Fouilloux,%20Hugo&rft.date=2022-02-07&rft.volume=134&rft.issue=7&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202113443&rft_dat=%3Cproquest_cross%3E2624097667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624097667&rft_id=info:pmid/&rfr_iscdi=true |