Data-driven geometry-based topology optimization

In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2022-02, Vol.65 (2), Article 69
Hauptverfasser: Hoang, Van-Nam, Nguyen, Ngoc-Linh, Tran, Dat Q., Vu, Quang-Viet, Nguyen-Xuan, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Structural and multidisciplinary optimization
container_volume 65
creator Hoang, Van-Nam
Nguyen, Ngoc-Linh
Tran, Dat Q.
Vu, Quang-Viet
Nguyen-Xuan, H.
description In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described by the geometry parameters. The DLN is simply built based on linear regression using a rectified linear unit (ReLU) activation function to minimize the loss function, which can be measured by the mean square error of the geometry parameters. The proposed approach could instantaneously provide an appropriate topology optimization design once the DLN has been trained. This approach does not require finite element analysis, design variable update, and other computations (e.g., sensitivity analysis) as often seen in the existing topology optimization approaches. Compared to the DLN based on element densities, the number of design variables and training time can be reduced significantly; the gray elements in void zones can also be also discarded.
doi_str_mv 10.1007/s00158-022-03170-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624033411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624033411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b8f85e1f132245cd009ef9ee02021da181f9b89f9def9c247d131c7384dde51d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8LnqMzSbpNjrJ-woIXBW8hbZLSZbepSVaov95qRW-eZhie9x14CDlHuESA8ioBYCEpMEaBYwlUHpAZLrGgKKQ8_N3L12NyktIGACQINSNwY7KhNrbvrls0LuxcjgOtTHJ2kUMftqEZFqHP7a79MLkN3Sk58mab3NnPnJOXu9vn1QNdP90_rq7XtOaoMq2kl4VDj5wxUdQWQDmvnAMGDK1BiV5VUnllx3PNRGmRY11yKax1BVo-JxdTbx_D296lrDdhH7vxpWZLJoBzgThSbKLqGFKKzus-tjsTB42gv8zoyYwezehvM1qOIT6F0gh3jYt_1f-kPgHAG2XR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624033411</pqid></control><display><type>article</type><title>Data-driven geometry-based topology optimization</title><source>Springer Nature - Complete Springer Journals</source><creator>Hoang, Van-Nam ; Nguyen, Ngoc-Linh ; Tran, Dat Q. ; Vu, Quang-Viet ; Nguyen-Xuan, H.</creator><creatorcontrib>Hoang, Van-Nam ; Nguyen, Ngoc-Linh ; Tran, Dat Q. ; Vu, Quang-Viet ; Nguyen-Xuan, H.</creatorcontrib><description>In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described by the geometry parameters. The DLN is simply built based on linear regression using a rectified linear unit (ReLU) activation function to minimize the loss function, which can be measured by the mean square error of the geometry parameters. The proposed approach could instantaneously provide an appropriate topology optimization design once the DLN has been trained. This approach does not require finite element analysis, design variable update, and other computations (e.g., sensitivity analysis) as often seen in the existing topology optimization approaches. Compared to the DLN based on element densities, the number of design variables and training time can be reduced significantly; the gray elements in void zones can also be also discarded.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-022-03170-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Design optimization ; Engineering ; Engineering Design ; Error analysis ; Finite element method ; Geometry ; Optimization ; Parameters ; Research Paper ; Sensitivity analysis ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2022-02, Vol.65 (2), Article 69</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b8f85e1f132245cd009ef9ee02021da181f9b89f9def9c247d131c7384dde51d3</citedby><cites>FETCH-LOGICAL-c319t-b8f85e1f132245cd009ef9ee02021da181f9b89f9def9c247d131c7384dde51d3</cites><orcidid>0000-0002-1746-8297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-022-03170-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-022-03170-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hoang, Van-Nam</creatorcontrib><creatorcontrib>Nguyen, Ngoc-Linh</creatorcontrib><creatorcontrib>Tran, Dat Q.</creatorcontrib><creatorcontrib>Vu, Quang-Viet</creatorcontrib><creatorcontrib>Nguyen-Xuan, H.</creatorcontrib><title>Data-driven geometry-based topology optimization</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described by the geometry parameters. The DLN is simply built based on linear regression using a rectified linear unit (ReLU) activation function to minimize the loss function, which can be measured by the mean square error of the geometry parameters. The proposed approach could instantaneously provide an appropriate topology optimization design once the DLN has been trained. This approach does not require finite element analysis, design variable update, and other computations (e.g., sensitivity analysis) as often seen in the existing topology optimization approaches. Compared to the DLN based on element densities, the number of design variables and training time can be reduced significantly; the gray elements in void zones can also be also discarded.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Error analysis</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Research Paper</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8LnqMzSbpNjrJ-woIXBW8hbZLSZbepSVaov95qRW-eZhie9x14CDlHuESA8ioBYCEpMEaBYwlUHpAZLrGgKKQ8_N3L12NyktIGACQINSNwY7KhNrbvrls0LuxcjgOtTHJ2kUMftqEZFqHP7a79MLkN3Sk58mab3NnPnJOXu9vn1QNdP90_rq7XtOaoMq2kl4VDj5wxUdQWQDmvnAMGDK1BiV5VUnllx3PNRGmRY11yKax1BVo-JxdTbx_D296lrDdhH7vxpWZLJoBzgThSbKLqGFKKzus-tjsTB42gv8zoyYwezehvM1qOIT6F0gh3jYt_1f-kPgHAG2XR</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hoang, Van-Nam</creator><creator>Nguyen, Ngoc-Linh</creator><creator>Tran, Dat Q.</creator><creator>Vu, Quang-Viet</creator><creator>Nguyen-Xuan, H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1746-8297</orcidid></search><sort><creationdate>20220201</creationdate><title>Data-driven geometry-based topology optimization</title><author>Hoang, Van-Nam ; Nguyen, Ngoc-Linh ; Tran, Dat Q. ; Vu, Quang-Viet ; Nguyen-Xuan, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b8f85e1f132245cd009ef9ee02021da181f9b89f9def9c247d131c7384dde51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Error analysis</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Research Paper</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Van-Nam</creatorcontrib><creatorcontrib>Nguyen, Ngoc-Linh</creatorcontrib><creatorcontrib>Tran, Dat Q.</creatorcontrib><creatorcontrib>Vu, Quang-Viet</creatorcontrib><creatorcontrib>Nguyen-Xuan, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoang, Van-Nam</au><au>Nguyen, Ngoc-Linh</au><au>Tran, Dat Q.</au><au>Vu, Quang-Viet</au><au>Nguyen-Xuan, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven geometry-based topology optimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>65</volume><issue>2</issue><artnum>69</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described by the geometry parameters. The DLN is simply built based on linear regression using a rectified linear unit (ReLU) activation function to minimize the loss function, which can be measured by the mean square error of the geometry parameters. The proposed approach could instantaneously provide an appropriate topology optimization design once the DLN has been trained. This approach does not require finite element analysis, design variable update, and other computations (e.g., sensitivity analysis) as often seen in the existing topology optimization approaches. Compared to the DLN based on element densities, the number of design variables and training time can be reduced significantly; the gray elements in void zones can also be also discarded.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-022-03170-8</doi><orcidid>https://orcid.org/0000-0002-1746-8297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2022-02, Vol.65 (2), Article 69
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2624033411
source Springer Nature - Complete Springer Journals
subjects Computational Mathematics and Numerical Analysis
Design optimization
Engineering
Engineering Design
Error analysis
Finite element method
Geometry
Optimization
Parameters
Research Paper
Sensitivity analysis
Theoretical and Applied Mechanics
Topology optimization
title Data-driven geometry-based topology optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20geometry-based%20topology%20optimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Hoang,%20Van-Nam&rft.date=2022-02-01&rft.volume=65&rft.issue=2&rft.artnum=69&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-022-03170-8&rft_dat=%3Cproquest_cross%3E2624033411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624033411&rft_id=info:pmid/&rfr_iscdi=true