Data-driven geometry-based topology optimization
In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2022-02, Vol.65 (2), Article 69 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Structural and multidisciplinary optimization |
container_volume | 65 |
creator | Hoang, Van-Nam Nguyen, Ngoc-Linh Tran, Dat Q. Vu, Quang-Viet Nguyen-Xuan, H. |
description | In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described by the geometry parameters. The DLN is simply built based on linear regression using a rectified linear unit (ReLU) activation function to minimize the loss function, which can be measured by the mean square error of the geometry parameters. The proposed approach could instantaneously provide an appropriate topology optimization design once the DLN has been trained. This approach does not require finite element analysis, design variable update, and other computations (e.g., sensitivity analysis) as often seen in the existing topology optimization approaches. Compared to the DLN based on element densities, the number of design variables and training time can be reduced significantly; the gray elements in void zones can also be also discarded. |
doi_str_mv | 10.1007/s00158-022-03170-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624033411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624033411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b8f85e1f132245cd009ef9ee02021da181f9b89f9def9c247d131c7384dde51d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8LnqMzSbpNjrJ-woIXBW8hbZLSZbepSVaov95qRW-eZhie9x14CDlHuESA8ioBYCEpMEaBYwlUHpAZLrGgKKQ8_N3L12NyktIGACQINSNwY7KhNrbvrls0LuxcjgOtTHJ2kUMftqEZFqHP7a79MLkN3Sk58mab3NnPnJOXu9vn1QNdP90_rq7XtOaoMq2kl4VDj5wxUdQWQDmvnAMGDK1BiV5VUnllx3PNRGmRY11yKax1BVo-JxdTbx_D296lrDdhH7vxpWZLJoBzgThSbKLqGFKKzus-tjsTB42gv8zoyYwezehvM1qOIT6F0gh3jYt_1f-kPgHAG2XR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624033411</pqid></control><display><type>article</type><title>Data-driven geometry-based topology optimization</title><source>Springer Nature - Complete Springer Journals</source><creator>Hoang, Van-Nam ; Nguyen, Ngoc-Linh ; Tran, Dat Q. ; Vu, Quang-Viet ; Nguyen-Xuan, H.</creator><creatorcontrib>Hoang, Van-Nam ; Nguyen, Ngoc-Linh ; Tran, Dat Q. ; Vu, Quang-Viet ; Nguyen-Xuan, H.</creatorcontrib><description>In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described by the geometry parameters. The DLN is simply built based on linear regression using a rectified linear unit (ReLU) activation function to minimize the loss function, which can be measured by the mean square error of the geometry parameters. The proposed approach could instantaneously provide an appropriate topology optimization design once the DLN has been trained. This approach does not require finite element analysis, design variable update, and other computations (e.g., sensitivity analysis) as often seen in the existing topology optimization approaches. Compared to the DLN based on element densities, the number of design variables and training time can be reduced significantly; the gray elements in void zones can also be also discarded.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-022-03170-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Design optimization ; Engineering ; Engineering Design ; Error analysis ; Finite element method ; Geometry ; Optimization ; Parameters ; Research Paper ; Sensitivity analysis ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2022-02, Vol.65 (2), Article 69</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b8f85e1f132245cd009ef9ee02021da181f9b89f9def9c247d131c7384dde51d3</citedby><cites>FETCH-LOGICAL-c319t-b8f85e1f132245cd009ef9ee02021da181f9b89f9def9c247d131c7384dde51d3</cites><orcidid>0000-0002-1746-8297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-022-03170-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-022-03170-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hoang, Van-Nam</creatorcontrib><creatorcontrib>Nguyen, Ngoc-Linh</creatorcontrib><creatorcontrib>Tran, Dat Q.</creatorcontrib><creatorcontrib>Vu, Quang-Viet</creatorcontrib><creatorcontrib>Nguyen-Xuan, H.</creatorcontrib><title>Data-driven geometry-based topology optimization</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described by the geometry parameters. The DLN is simply built based on linear regression using a rectified linear unit (ReLU) activation function to minimize the loss function, which can be measured by the mean square error of the geometry parameters. The proposed approach could instantaneously provide an appropriate topology optimization design once the DLN has been trained. This approach does not require finite element analysis, design variable update, and other computations (e.g., sensitivity analysis) as often seen in the existing topology optimization approaches. Compared to the DLN based on element densities, the number of design variables and training time can be reduced significantly; the gray elements in void zones can also be also discarded.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Error analysis</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Research Paper</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8LnqMzSbpNjrJ-woIXBW8hbZLSZbepSVaov95qRW-eZhie9x14CDlHuESA8ioBYCEpMEaBYwlUHpAZLrGgKKQ8_N3L12NyktIGACQINSNwY7KhNrbvrls0LuxcjgOtTHJ2kUMftqEZFqHP7a79MLkN3Sk58mab3NnPnJOXu9vn1QNdP90_rq7XtOaoMq2kl4VDj5wxUdQWQDmvnAMGDK1BiV5VUnllx3PNRGmRY11yKax1BVo-JxdTbx_D296lrDdhH7vxpWZLJoBzgThSbKLqGFKKzus-tjsTB42gv8zoyYwezehvM1qOIT6F0gh3jYt_1f-kPgHAG2XR</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hoang, Van-Nam</creator><creator>Nguyen, Ngoc-Linh</creator><creator>Tran, Dat Q.</creator><creator>Vu, Quang-Viet</creator><creator>Nguyen-Xuan, H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1746-8297</orcidid></search><sort><creationdate>20220201</creationdate><title>Data-driven geometry-based topology optimization</title><author>Hoang, Van-Nam ; Nguyen, Ngoc-Linh ; Tran, Dat Q. ; Vu, Quang-Viet ; Nguyen-Xuan, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b8f85e1f132245cd009ef9ee02021da181f9b89f9def9c247d131c7384dde51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Error analysis</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Research Paper</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Van-Nam</creatorcontrib><creatorcontrib>Nguyen, Ngoc-Linh</creatorcontrib><creatorcontrib>Tran, Dat Q.</creatorcontrib><creatorcontrib>Vu, Quang-Viet</creatorcontrib><creatorcontrib>Nguyen-Xuan, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoang, Van-Nam</au><au>Nguyen, Ngoc-Linh</au><au>Tran, Dat Q.</au><au>Vu, Quang-Viet</au><au>Nguyen-Xuan, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven geometry-based topology optimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>65</volume><issue>2</issue><artnum>69</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>In this paper, a simple deep learning network (DLN) based on the geometry parameters of moving morphable bars (MMBs) was proposed for the data-driven optimal topology prediction. The MMBs-based topology optimization approach is adopted to generate datasets that contain optimized topologies described by the geometry parameters. The DLN is simply built based on linear regression using a rectified linear unit (ReLU) activation function to minimize the loss function, which can be measured by the mean square error of the geometry parameters. The proposed approach could instantaneously provide an appropriate topology optimization design once the DLN has been trained. This approach does not require finite element analysis, design variable update, and other computations (e.g., sensitivity analysis) as often seen in the existing topology optimization approaches. Compared to the DLN based on element densities, the number of design variables and training time can be reduced significantly; the gray elements in void zones can also be also discarded.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-022-03170-8</doi><orcidid>https://orcid.org/0000-0002-1746-8297</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2022-02, Vol.65 (2), Article 69 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2624033411 |
source | Springer Nature - Complete Springer Journals |
subjects | Computational Mathematics and Numerical Analysis Design optimization Engineering Engineering Design Error analysis Finite element method Geometry Optimization Parameters Research Paper Sensitivity analysis Theoretical and Applied Mechanics Topology optimization |
title | Data-driven geometry-based topology optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20geometry-based%20topology%20optimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Hoang,%20Van-Nam&rft.date=2022-02-01&rft.volume=65&rft.issue=2&rft.artnum=69&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-022-03170-8&rft_dat=%3Cproquest_cross%3E2624033411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624033411&rft_id=info:pmid/&rfr_iscdi=true |