Convergence of a continuous Galerkin method for hyperbolic-parabolic systems
We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bause, Markus Anselmann, Mathias Köcher, Uwe Radu, Florin A |
description | We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2624031811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624031811</sourcerecordid><originalsourceid>FETCH-proquest_journals_26240318113</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_GGgtzEPNvfRYtGwvk11T07k2dybw74voA1qdA-csWKS0lkmRKrViMVEvhFD5TmWZjti5RPsCdwdbA8eGG16j9Z0NGIgfzQDu0Vk-gm_xxht0vJ0ncFccujqZjDNf4zSTh5E2bNmYgSD-cc22h_2lPCWTw2cA8lWPwdlPqlSuUqFlIaX-73oDnmk-HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624031811</pqid></control><display><type>article</type><title>Convergence of a continuous Galerkin method for hyperbolic-parabolic systems</title><source>Free E- Journals</source><creator>Bause, Markus ; Anselmann, Mathias ; Köcher, Uwe ; Radu, Florin A</creator><creatorcontrib>Bause, Markus ; Anselmann, Mathias ; Köcher, Uwe ; Radu, Florin A</creatorcontrib><description>We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Elastodynamics ; Error analysis ; Estimates ; Finite element method ; Galerkin method ; Mathematical analysis ; Thermoelasticity</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Bause, Markus</creatorcontrib><creatorcontrib>Anselmann, Mathias</creatorcontrib><creatorcontrib>Köcher, Uwe</creatorcontrib><creatorcontrib>Radu, Florin A</creatorcontrib><title>Convergence of a continuous Galerkin method for hyperbolic-parabolic systems</title><title>arXiv.org</title><description>We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced.</description><subject>Approximation</subject><subject>Elastodynamics</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Mathematical analysis</subject><subject>Thermoelasticity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_GGgtzEPNvfRYtGwvk11T07k2dybw74voA1qdA-csWKS0lkmRKrViMVEvhFD5TmWZjti5RPsCdwdbA8eGG16j9Z0NGIgfzQDu0Vk-gm_xxht0vJ0ncFccujqZjDNf4zSTh5E2bNmYgSD-cc22h_2lPCWTw2cA8lWPwdlPqlSuUqFlIaX-73oDnmk-HQ</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Bause, Markus</creator><creator>Anselmann, Mathias</creator><creator>Köcher, Uwe</creator><creator>Radu, Florin A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230213</creationdate><title>Convergence of a continuous Galerkin method for hyperbolic-parabolic systems</title><author>Bause, Markus ; Anselmann, Mathias ; Köcher, Uwe ; Radu, Florin A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26240318113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Elastodynamics</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Mathematical analysis</topic><topic>Thermoelasticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Bause, Markus</creatorcontrib><creatorcontrib>Anselmann, Mathias</creatorcontrib><creatorcontrib>Köcher, Uwe</creatorcontrib><creatorcontrib>Radu, Florin A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bause, Markus</au><au>Anselmann, Mathias</au><au>Köcher, Uwe</au><au>Radu, Florin A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convergence of a continuous Galerkin method for hyperbolic-parabolic systems</atitle><jtitle>arXiv.org</jtitle><date>2023-02-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2624031811 |
source | Free E- Journals |
subjects | Approximation Elastodynamics Error analysis Estimates Finite element method Galerkin method Mathematical analysis Thermoelasticity |
title | Convergence of a continuous Galerkin method for hyperbolic-parabolic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convergence%20of%20a%20continuous%20Galerkin%20method%20for%20hyperbolic-parabolic%20systems&rft.jtitle=arXiv.org&rft.au=Bause,%20Markus&rft.date=2023-02-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2624031811%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624031811&rft_id=info:pmid/&rfr_iscdi=true |