Convergence of a continuous Galerkin method for hyperbolic-parabolic systems

We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Bause, Markus, Anselmann, Mathias, Köcher, Uwe, Radu, Florin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bause, Markus
Anselmann, Mathias
Köcher, Uwe
Radu, Florin A
description We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2624031811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624031811</sourcerecordid><originalsourceid>FETCH-proquest_journals_26240318113</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_GGgtzEPNvfRYtGwvk11T07k2dybw74voA1qdA-csWKS0lkmRKrViMVEvhFD5TmWZjti5RPsCdwdbA8eGG16j9Z0NGIgfzQDu0Vk-gm_xxht0vJ0ncFccujqZjDNf4zSTh5E2bNmYgSD-cc22h_2lPCWTw2cA8lWPwdlPqlSuUqFlIaX-73oDnmk-HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624031811</pqid></control><display><type>article</type><title>Convergence of a continuous Galerkin method for hyperbolic-parabolic systems</title><source>Free E- Journals</source><creator>Bause, Markus ; Anselmann, Mathias ; Köcher, Uwe ; Radu, Florin A</creator><creatorcontrib>Bause, Markus ; Anselmann, Mathias ; Köcher, Uwe ; Radu, Florin A</creatorcontrib><description>We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Elastodynamics ; Error analysis ; Estimates ; Finite element method ; Galerkin method ; Mathematical analysis ; Thermoelasticity</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Bause, Markus</creatorcontrib><creatorcontrib>Anselmann, Mathias</creatorcontrib><creatorcontrib>Köcher, Uwe</creatorcontrib><creatorcontrib>Radu, Florin A</creatorcontrib><title>Convergence of a continuous Galerkin method for hyperbolic-parabolic systems</title><title>arXiv.org</title><description>We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced.</description><subject>Approximation</subject><subject>Elastodynamics</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Mathematical analysis</subject><subject>Thermoelasticity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_GGgtzEPNvfRYtGwvk11T07k2dybw74voA1qdA-csWKS0lkmRKrViMVEvhFD5TmWZjti5RPsCdwdbA8eGG16j9Z0NGIgfzQDu0Vk-gm_xxht0vJ0ncFccujqZjDNf4zSTh5E2bNmYgSD-cc22h_2lPCWTw2cA8lWPwdlPqlSuUqFlIaX-73oDnmk-HQ</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Bause, Markus</creator><creator>Anselmann, Mathias</creator><creator>Köcher, Uwe</creator><creator>Radu, Florin A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230213</creationdate><title>Convergence of a continuous Galerkin method for hyperbolic-parabolic systems</title><author>Bause, Markus ; Anselmann, Mathias ; Köcher, Uwe ; Radu, Florin A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26240318113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Elastodynamics</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Mathematical analysis</topic><topic>Thermoelasticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Bause, Markus</creatorcontrib><creatorcontrib>Anselmann, Mathias</creatorcontrib><creatorcontrib>Köcher, Uwe</creatorcontrib><creatorcontrib>Radu, Florin A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bause, Markus</au><au>Anselmann, Mathias</au><au>Köcher, Uwe</au><au>Radu, Florin A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convergence of a continuous Galerkin method for hyperbolic-parabolic systems</atitle><jtitle>arXiv.org</jtitle><date>2023-02-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modeling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in time and inf-sup stable pairs of finite element spaces for the spatial variables are investigated. Optimal order error estimates are proved by an analysis in weighted norms that depict the energy of the system's unknowns. A further important ingredient and challenge of the analysis is the control of the couplings terms. The techniques developed here can be generalized to other families of Galerkin space discretizations and advanced models. The error estimates are confirmed by numerical experiments, also for higher order piecewise polynomials in time and space. The latter lead to algebraic systems with complex block structure and put a facet of challenge on the design of iterative solvers. An efficient solution technique is referenced.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2624031811
source Free E- Journals
subjects Approximation
Elastodynamics
Error analysis
Estimates
Finite element method
Galerkin method
Mathematical analysis
Thermoelasticity
title Convergence of a continuous Galerkin method for hyperbolic-parabolic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convergence%20of%20a%20continuous%20Galerkin%20method%20for%20hyperbolic-parabolic%20systems&rft.jtitle=arXiv.org&rft.au=Bause,%20Markus&rft.date=2023-02-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2624031811%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624031811&rft_id=info:pmid/&rfr_iscdi=true