On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation

In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation A X A = X A X . In particular, if A is a regular matrix, we prove that the trivial solution X = 0 is always isolated in the solution set, while the trivial solution X = A is isolated un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 73
Hauptverfasser: Dinčić, Nebojša Č., Djordjević, Bogdan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 116
creator Dinčić, Nebojša Č.
Djordjević, Bogdan D.
description In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation A X A = X A X . In particular, if A is a regular matrix, we prove that the trivial solution X = 0 is always isolated in the solution set, while the trivial solution X = A is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when A is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether A is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular A ). Explicit examples are provided after almost every theoretical result.
doi_str_mv 10.1007/s13398-022-01214-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623886994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623886994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4d8225958f1e72ec7dda5c76e04165094af68217601e927f0bdee315d25faa0a3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWLQv4CngOZpJNpvkqMV_UOhFQU8h7s7Wre1um2Sh3nwH39AncdsVvDmXGWa-7xv4EXIG_AI415cRpLSGcSEYBwEZMwdkBEpbBoqrw_1smJZcHpNxjAvel4TMcD0iz7OGpjekdZNC3cS6oDGFrkhdQNpW-1Nsl12q24ZGTDS1-92Lb-bfn1_XfpswsGX9jnTl-4QtxU3nd-pTclT5ZcTxbz8hT7c3j5N7Np3dPUyupqyQYBPLSiOEsspUgFpgocvSq0LnyDPIFbeZr3IjQOcc0Apd8dcSUYIqhaq8516ekPMhdx3aTYcxuUXbhaZ_6UQupDG5tVmvEoOqCG2MASu3DvXKhw8H3O0gugGi6yG6PURnepMcTLEXN3MMf9H_uH4APS91aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623886994</pqid></control><display><type>article</type><title>On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dinčić, Nebojša Č. ; Djordjević, Bogdan D.</creator><creatorcontrib>Dinčić, Nebojša Č. ; Djordjević, Bogdan D.</creatorcontrib><description>In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation A X A = X A X . In particular, if A is a regular matrix, we prove that the trivial solution X = 0 is always isolated in the solution set, while the trivial solution X = A is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when A is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether A is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular A ). Explicit examples are provided after almost every theoretical result.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-022-01214-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Out of stock ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 73</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2022</rights><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4d8225958f1e72ec7dda5c76e04165094af68217601e927f0bdee315d25faa0a3</citedby><cites>FETCH-LOGICAL-c319t-4d8225958f1e72ec7dda5c76e04165094af68217601e927f0bdee315d25faa0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-022-01214-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-022-01214-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dinčić, Nebojša Č.</creatorcontrib><creatorcontrib>Djordjević, Bogdan D.</creatorcontrib><title>On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</addtitle><description>In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation A X A = X A X . In particular, if A is a regular matrix, we prove that the trivial solution X = 0 is always isolated in the solution set, while the trivial solution X = A is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when A is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether A is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular A ). Explicit examples are provided after almost every theoretical result.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Out of stock</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWLQv4CngOZpJNpvkqMV_UOhFQU8h7s7Wre1um2Sh3nwH39AncdsVvDmXGWa-7xv4EXIG_AI415cRpLSGcSEYBwEZMwdkBEpbBoqrw_1smJZcHpNxjAvel4TMcD0iz7OGpjekdZNC3cS6oDGFrkhdQNpW-1Nsl12q24ZGTDS1-92Lb-bfn1_XfpswsGX9jnTl-4QtxU3nd-pTclT5ZcTxbz8hT7c3j5N7Np3dPUyupqyQYBPLSiOEsspUgFpgocvSq0LnyDPIFbeZr3IjQOcc0Apd8dcSUYIqhaq8516ekPMhdx3aTYcxuUXbhaZ_6UQupDG5tVmvEoOqCG2MASu3DvXKhw8H3O0gugGi6yG6PURnepMcTLEXN3MMf9H_uH4APS91aA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Dinčić, Nebojša Č.</creator><creator>Djordjević, Bogdan D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220401</creationdate><title>On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation</title><author>Dinčić, Nebojša Č. ; Djordjević, Bogdan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4d8225958f1e72ec7dda5c76e04165094af68217601e927f0bdee315d25faa0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Out of stock</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinčić, Nebojša Č.</creatorcontrib><creatorcontrib>Djordjević, Bogdan D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinčić, Nebojša Č.</au><au>Djordjević, Bogdan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>116</volume><issue>2</issue><artnum>73</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation A X A = X A X . In particular, if A is a regular matrix, we prove that the trivial solution X = 0 is always isolated in the solution set, while the trivial solution X = A is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when A is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether A is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular A ). Explicit examples are provided after almost every theoretical result.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-022-01214-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 73
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2623886994
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Original Paper
Out of stock
Theoretical
title On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20intrinsic%20structure%20of%20the%20solution%20set%20to%20the%20Yang%E2%80%93Baxter-like%20matrix%20equation&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Din%C4%8Di%C4%87,%20Neboj%C5%A1a%20%C4%8C.&rft.date=2022-04-01&rft.volume=116&rft.issue=2&rft.artnum=73&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-022-01214-8&rft_dat=%3Cproquest_cross%3E2623886994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623886994&rft_id=info:pmid/&rfr_iscdi=true