On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation
In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation A X A = X A X . In particular, if A is a regular matrix, we prove that the trivial solution X = 0 is always isolated in the solution set, while the trivial solution X = A is isolated un...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 73 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas |
container_volume | 116 |
creator | Dinčić, Nebojša Č. Djordjević, Bogdan D. |
description | In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation
A
X
A
=
X
A
X
. In particular, if
A
is a regular matrix, we prove that the trivial solution
X
=
0
is always isolated in the solution set, while the trivial solution
X
=
A
is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when
A
is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether
A
is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular
A
). Explicit examples are provided after almost every theoretical result. |
doi_str_mv | 10.1007/s13398-022-01214-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623886994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623886994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4d8225958f1e72ec7dda5c76e04165094af68217601e927f0bdee315d25faa0a3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWLQv4CngOZpJNpvkqMV_UOhFQU8h7s7Wre1um2Sh3nwH39AncdsVvDmXGWa-7xv4EXIG_AI415cRpLSGcSEYBwEZMwdkBEpbBoqrw_1smJZcHpNxjAvel4TMcD0iz7OGpjekdZNC3cS6oDGFrkhdQNpW-1Nsl12q24ZGTDS1-92Lb-bfn1_XfpswsGX9jnTl-4QtxU3nd-pTclT5ZcTxbz8hT7c3j5N7Np3dPUyupqyQYBPLSiOEsspUgFpgocvSq0LnyDPIFbeZr3IjQOcc0Apd8dcSUYIqhaq8516ekPMhdx3aTYcxuUXbhaZ_6UQupDG5tVmvEoOqCG2MASu3DvXKhw8H3O0gugGi6yG6PURnepMcTLEXN3MMf9H_uH4APS91aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623886994</pqid></control><display><type>article</type><title>On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dinčić, Nebojša Č. ; Djordjević, Bogdan D.</creator><creatorcontrib>Dinčić, Nebojša Č. ; Djordjević, Bogdan D.</creatorcontrib><description>In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation
A
X
A
=
X
A
X
. In particular, if
A
is a regular matrix, we prove that the trivial solution
X
=
0
is always isolated in the solution set, while the trivial solution
X
=
A
is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when
A
is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether
A
is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular
A
). Explicit examples are provided after almost every theoretical result.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-022-01214-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Out of stock ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 73</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2022</rights><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4d8225958f1e72ec7dda5c76e04165094af68217601e927f0bdee315d25faa0a3</citedby><cites>FETCH-LOGICAL-c319t-4d8225958f1e72ec7dda5c76e04165094af68217601e927f0bdee315d25faa0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-022-01214-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-022-01214-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dinčić, Nebojša Č.</creatorcontrib><creatorcontrib>Djordjević, Bogdan D.</creatorcontrib><title>On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</addtitle><description>In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation
A
X
A
=
X
A
X
. In particular, if
A
is a regular matrix, we prove that the trivial solution
X
=
0
is always isolated in the solution set, while the trivial solution
X
=
A
is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when
A
is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether
A
is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular
A
). Explicit examples are provided after almost every theoretical result.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Out of stock</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWLQv4CngOZpJNpvkqMV_UOhFQU8h7s7Wre1um2Sh3nwH39AncdsVvDmXGWa-7xv4EXIG_AI415cRpLSGcSEYBwEZMwdkBEpbBoqrw_1smJZcHpNxjAvel4TMcD0iz7OGpjekdZNC3cS6oDGFrkhdQNpW-1Nsl12q24ZGTDS1-92Lb-bfn1_XfpswsGX9jnTl-4QtxU3nd-pTclT5ZcTxbz8hT7c3j5N7Np3dPUyupqyQYBPLSiOEsspUgFpgocvSq0LnyDPIFbeZr3IjQOcc0Apd8dcSUYIqhaq8516ekPMhdx3aTYcxuUXbhaZ_6UQupDG5tVmvEoOqCG2MASu3DvXKhw8H3O0gugGi6yG6PURnepMcTLEXN3MMf9H_uH4APS91aA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Dinčić, Nebojša Č.</creator><creator>Djordjević, Bogdan D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220401</creationdate><title>On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation</title><author>Dinčić, Nebojša Č. ; Djordjević, Bogdan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4d8225958f1e72ec7dda5c76e04165094af68217601e927f0bdee315d25faa0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Out of stock</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinčić, Nebojša Č.</creatorcontrib><creatorcontrib>Djordjević, Bogdan D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinčić, Nebojša Č.</au><au>Djordjević, Bogdan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>116</volume><issue>2</issue><artnum>73</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>In this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation
A
X
A
=
X
A
X
. In particular, if
A
is a regular matrix, we prove that the trivial solution
X
=
0
is always isolated in the solution set, while the trivial solution
X
=
A
is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when
A
is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether
A
is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular
A
). Explicit examples are provided after almost every theoretical result.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-022-01214-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1578-7303 |
ispartof | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 73 |
issn | 1578-7303 1579-1505 |
language | eng |
recordid | cdi_proquest_journals_2623886994 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Mathematical and Computational Physics Mathematics Mathematics and Statistics Original Paper Out of stock Theoretical |
title | On the intrinsic structure of the solution set to the Yang–Baxter-like matrix equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20intrinsic%20structure%20of%20the%20solution%20set%20to%20the%20Yang%E2%80%93Baxter-like%20matrix%20equation&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Din%C4%8Di%C4%87,%20Neboj%C5%A1a%20%C4%8C.&rft.date=2022-04-01&rft.volume=116&rft.issue=2&rft.artnum=73&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-022-01214-8&rft_dat=%3Cproquest_cross%3E2623886994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623886994&rft_id=info:pmid/&rfr_iscdi=true |