Detail enhancement decolorization algorithm based on rolling guided filtering

An important goal of color image gray-scale is to keep the edge details of the original color image as much as possible. In many cases, the degree of feature discrimination is maintained, but in some cases, edge details are still lost or blurred. Therefore, this paper first uses an improved non-line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022, Vol.81 (2), p.2711-2731
Hauptverfasser: Yu, Nana, Li, Jinjiang, Hua, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2731
container_issue 2
container_start_page 2711
container_title Multimedia tools and applications
container_volume 81
creator Yu, Nana
Li, Jinjiang
Hua, Zhen
description An important goal of color image gray-scale is to keep the edge details of the original color image as much as possible. In many cases, the degree of feature discrimination is maintained, but in some cases, edge details are still lost or blurred. Therefore, this paper first uses an improved non-linear global mapping grayscale method to grayscale the color image, and then proposes a grayscale image detail enhancement algorithm based on rolling guided filtering. The method in this paper is to enhance the edge details of the grayscale image by rolling guided filter processing on the basis of the grayscale image. In addition, the rolling-guided filter is a local linear model with better edge retention characteristics, which can overcome the defect that other filters are prone to gradient flips on the edges where the gray level of the image changes sharply, causing the image to appear “false edges”. The experimental results show that when the traditional method loses or blurs the detailed features, the method in this paper can maintain better detailed features.
doi_str_mv 10.1007/s11042-021-11677-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623629520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623629520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af732df10b264b48841b509ac89d32f06c79a64219ab3708965204af99bd3a6b3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrE2bBrO3Z8ROUpFXGBs2UndpsqTYqdHuDrcQkSN067O5qZ3R1CLhGuEUDdJEQQjAJDiiiVovyIzLBUnCrF8Dj3vAKqSsBTcpbSBgBlycSMvNz50bZd4fu17Wu_9f1YNL4euiG2X3Zsh76w3SoP43pbOJt8U2QoDl3X9qtitW-bjIS2G33MwDk5CbZL_uK3zsn7w_3b4okuXx-fF7dLWnPUI7VBcdYEBMekcKKqBLoStK0r3XAWQNZKWykYauu4gkrnW0HYoLVruJWOz8nV5LuLw8fep9Fshn3s80rDJOOS6SzILDax6jikFH0wu9hubfw0COYQm5liMzk28xOb4VnEJ1HaHT7y8c_6H9U3v_VvxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623629520</pqid></control><display><type>article</type><title>Detail enhancement decolorization algorithm based on rolling guided filtering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Nana ; Li, Jinjiang ; Hua, Zhen</creator><creatorcontrib>Yu, Nana ; Li, Jinjiang ; Hua, Zhen</creatorcontrib><description>An important goal of color image gray-scale is to keep the edge details of the original color image as much as possible. In many cases, the degree of feature discrimination is maintained, but in some cases, edge details are still lost or blurred. Therefore, this paper first uses an improved non-linear global mapping grayscale method to grayscale the color image, and then proposes a grayscale image detail enhancement algorithm based on rolling guided filtering. The method in this paper is to enhance the edge details of the grayscale image by rolling guided filter processing on the basis of the grayscale image. In addition, the rolling-guided filter is a local linear model with better edge retention characteristics, which can overcome the defect that other filters are prone to gradient flips on the edges where the gray level of the image changes sharply, causing the image to appear “false edges”. The experimental results show that when the traditional method loses or blurs the detailed features, the method in this paper can maintain better detailed features.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-11677-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Color imagery ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Decoloring ; Gray scale ; Image enhancement ; Image filters ; Industrial production ; Information theory ; Multimedia ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022, Vol.81 (2), p.2711-2731</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af732df10b264b48841b509ac89d32f06c79a64219ab3708965204af99bd3a6b3</citedby><cites>FETCH-LOGICAL-c319t-af732df10b264b48841b509ac89d32f06c79a64219ab3708965204af99bd3a6b3</cites><orcidid>0000-0002-2080-8678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-11677-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-11677-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yu, Nana</creatorcontrib><creatorcontrib>Li, Jinjiang</creatorcontrib><creatorcontrib>Hua, Zhen</creatorcontrib><title>Detail enhancement decolorization algorithm based on rolling guided filtering</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>An important goal of color image gray-scale is to keep the edge details of the original color image as much as possible. In many cases, the degree of feature discrimination is maintained, but in some cases, edge details are still lost or blurred. Therefore, this paper first uses an improved non-linear global mapping grayscale method to grayscale the color image, and then proposes a grayscale image detail enhancement algorithm based on rolling guided filtering. The method in this paper is to enhance the edge details of the grayscale image by rolling guided filter processing on the basis of the grayscale image. In addition, the rolling-guided filter is a local linear model with better edge retention characteristics, which can overcome the defect that other filters are prone to gradient flips on the edges where the gray level of the image changes sharply, causing the image to appear “false edges”. The experimental results show that when the traditional method loses or blurs the detailed features, the method in this paper can maintain better detailed features.</description><subject>Algorithms</subject><subject>Color imagery</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Decoloring</subject><subject>Gray scale</subject><subject>Image enhancement</subject><subject>Image filters</subject><subject>Industrial production</subject><subject>Information theory</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcIrE2bBrO3Z8ROUpFXGBs2UndpsqTYqdHuDrcQkSN067O5qZ3R1CLhGuEUDdJEQQjAJDiiiVovyIzLBUnCrF8Dj3vAKqSsBTcpbSBgBlycSMvNz50bZd4fu17Wu_9f1YNL4euiG2X3Zsh76w3SoP43pbOJt8U2QoDl3X9qtitW-bjIS2G33MwDk5CbZL_uK3zsn7w_3b4okuXx-fF7dLWnPUI7VBcdYEBMekcKKqBLoStK0r3XAWQNZKWykYauu4gkrnW0HYoLVruJWOz8nV5LuLw8fep9Fshn3s80rDJOOS6SzILDax6jikFH0wu9hubfw0COYQm5liMzk28xOb4VnEJ1HaHT7y8c_6H9U3v_VvxQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yu, Nana</creator><creator>Li, Jinjiang</creator><creator>Hua, Zhen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2080-8678</orcidid></search><sort><creationdate>2022</creationdate><title>Detail enhancement decolorization algorithm based on rolling guided filtering</title><author>Yu, Nana ; Li, Jinjiang ; Hua, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af732df10b264b48841b509ac89d32f06c79a64219ab3708965204af99bd3a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Color imagery</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Decoloring</topic><topic>Gray scale</topic><topic>Image enhancement</topic><topic>Image filters</topic><topic>Industrial production</topic><topic>Information theory</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Nana</creatorcontrib><creatorcontrib>Li, Jinjiang</creatorcontrib><creatorcontrib>Hua, Zhen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Nana</au><au>Li, Jinjiang</au><au>Hua, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detail enhancement decolorization algorithm based on rolling guided filtering</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022</date><risdate>2022</risdate><volume>81</volume><issue>2</issue><spage>2711</spage><epage>2731</epage><pages>2711-2731</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>An important goal of color image gray-scale is to keep the edge details of the original color image as much as possible. In many cases, the degree of feature discrimination is maintained, but in some cases, edge details are still lost or blurred. Therefore, this paper first uses an improved non-linear global mapping grayscale method to grayscale the color image, and then proposes a grayscale image detail enhancement algorithm based on rolling guided filtering. The method in this paper is to enhance the edge details of the grayscale image by rolling guided filter processing on the basis of the grayscale image. In addition, the rolling-guided filter is a local linear model with better edge retention characteristics, which can overcome the defect that other filters are prone to gradient flips on the edges where the gray level of the image changes sharply, causing the image to appear “false edges”. The experimental results show that when the traditional method loses or blurs the detailed features, the method in this paper can maintain better detailed features.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-11677-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2080-8678</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022, Vol.81 (2), p.2711-2731
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2623629520
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Color imagery
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Decoloring
Gray scale
Image enhancement
Image filters
Industrial production
Information theory
Multimedia
Multimedia Information Systems
Special Purpose and Application-Based Systems
title Detail enhancement decolorization algorithm based on rolling guided filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detail%20enhancement%20decolorization%20algorithm%20based%20on%20rolling%20guided%20filtering&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Yu,%20Nana&rft.date=2022&rft.volume=81&rft.issue=2&rft.spage=2711&rft.epage=2731&rft.pages=2711-2731&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-11677-3&rft_dat=%3Cproquest_cross%3E2623629520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623629520&rft_id=info:pmid/&rfr_iscdi=true